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Abstract
Website fingerprinting (WF) is a potentially devastating attack
against Tor because it can break anonymity by linking a Tor user to
their purportedly unlinkable internet destinations. Previous work
proposes that an adversary trains WF classifiers either on synthetic
traces that are programmatically generated using automated tools,
or on real-world traces collected from one or more Tor exit re-
lays. However, no existing work accurately represents a real-world
threat model in which a WF adversary’s classifiers must be tested
against real-world entry traces that are naturally created by real
Tor users. In this paper we present Retracer, a novel method for pro-
ducing labeled entry traces of genuine Tor traffic patterns. Retracer
uses high-fidelity network simulation to accurately transform real-
world exit traces into entry traces prior to training and testing WF
classifiers. After first demonstrating that Retracer accurately trans-
forms exit traces into entry traces, we then apply it to the recently
released GTT23 dataset in a WF evaluation in which more than
3,500 classifiers are tested against, for the first time, labeled entry
traces of real Tor traffic patterns. Our evaluation yields the best
available estimate of the performance an adversary can achieve
when directing WF attacks at real Tor users.
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1 Introduction
Website fingerprinting (WF) is a serious attack on Web privacy in
which an adversary that can observe the encrypted traffic patterns
of a user’s internet connections can infer the website being accessed
or the content being loaded through those connections [5, 14, 15, 30,
45]. WF has most often been studied as an attack against the Tor net-
work [10]. To carry out a Tor WF attack, the adversary first trains
machine learning (ML) classifiers to associate website labels with
their corresponding cell traces, each of which encodes the direction-
ality and timing of a sequence of onion-encrypted, application-layer
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Tor messages (called cells). From a vantage point on the entry-side
of the Tor network, the adversary may then observe users’ Tor traf-
fic and employ the classifiers to predict the visited websites. Thus, a
WF attack enables the adversary to deanonymize Tor users by link-
ing them to their purportedly unlinkable internet destinations [4,
7–9, 13, 22, 33–36, 39–44, 48, 50, 51].

In using ML for WF, example cell traces and labels are required
to train WF classifiers. Recent work by Cherubin et al. was the
first to consider that an adversary can train its classifiers using the
real-world cell traces and labels that are naturally created by real
Tor users and observed by Tor exit relays [8] rather than using syn-
thetic traces that are programmatically generated using automated
tools [1]. The authors argue that the naturally occurring exit traces
are more realistic than synthetic traces and thus improve our ability
to accurately assess the real-world threat of WF. However, the pro-
posed training strategy has a major limitation: a WF adversary may
train classifiers on real traces from an exit relay, but must evaluate
them during a WF attack on observations from their entry-side
vantage point. The inconsistency between the training and testing
positions was shown to reduce classifier accuracy by 5–18% [8,
§ 6.4], raising unanswered questions about the extent to which an
adversary could benefit from real exit-relay traces in practice.

We examine the research question: to what extent can a WF ad-
versary effectively mitigate the classifier performance degradation
resulting from training on real-world Tor exit traces? Effective meth-
ods that are robust to variation in the cell trace capture position
would increase the viability of a real-world exit training strategy but
have thus far been unexplored. Although Cherubin et al. conducted
a preliminary measurement of the amount of degradation, they
did not evaluate any potential mitigation strategy [8, § 6.4]. Other
methods have been proposed for augmenting traces to be robust
to variation in Tor network conditions such as relay congestion [2,
22], but these approaches do not consider inconsistencies between
training and testing positions; indeed, we evaluate NetAug [2] in §4
and find that it has a detrimental effect on performance compared
to training directly on non-augmented exit traces.

In this paper we present Retracer, a novel method for trace trans-
duction: for producing cell traces in a target relay position given
traces in any other relay position. The key insight behind Retracer
is that the directionality and timing information present in cell
traces can be used to reproduce the original sequence of Tor cells
in different network environments. From this insight we design
Retracer to replay an existing set of cell traces inside of large-scale,
high-fidelity Tor network simulations [18, 19], during which we
measure the resulting traces that are observed by different simu-
lated vantage points. Retracer was carefully designed to consider
network latency and replay position while attempting to reproduce
cell traces in simulation exactly as they were originally observed
in the real world. We highlight that Retracer is not an attack itself,
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but a pre-training method that we will demonstrate can boost the
real-world performance of WF classifiers trained on its output.

We evaluate Retracer’s efficacy in a likely task of a real-world
adversary: transducing real cell traces collected by an exit relay into
entry traces prior to training classifiers that will later be deployed
on an entry-side vantage point during a WF attack. Our evaluation
uses three new WF datasets that we measured to provide accurately
labeled traces from both entry and exit positions in the live Tor
network. We use these datasets to evaluate Retracer considering a
downstream WF task as a scoring metric. We find that WF classifier
accuracy degrades by 13 percentage points when training on exit
traces but testing on entry traces as proposed in previous work [8],
and that 10 points of classifier accuracy is recovered when training
using entry traces transduced from exit traces by Retracer. We
also find that classifiers trained with Retracer are consistently 15
points more accurate than classifiers trained with the NetAug trace
augmentation method [2] across multiple algorithm settings.

After having established Retracer’s efficacy, we conduct an exten-
sive real-world WF evaluation using GTT23, a recently published
dataset of traces that were naturally created by real Tor users and
measured by real-world Tor exit relays [23, 24]. GTT23 contains exit
traces and thus suffers from the same limitation as the exit relay
strategy of Cherubin et al. [8], but we use Retracer to overcome
this limitation by transducing the exit traces to entry traces. We
consider the fingerprintability of individual websites by training
and testing more than 3,500 website classifiers using more than
3,500,000 real-world traces and comparing their performance dis-
tributions. We find that an overwhelming majority of our trained
classifiers are unlikely to be viable in real-world WF attacks because
they would be quickly overrun with false positives: fewer than 20%
of our website classifiers achieve greater than a 0.75 precision score.
In the first feature importance analysis on real-world exit traces,
we find that the number of traces and trace variability are among
the most important features predicting classifier performance. We
also draw comparisons to previous WF methods while considering
more accurate methods of estimating real-world WF performance.

Our contributions yield the best real-world WF threat estimate:
– The design of Retracer, a novel trace transducer that produces

cell traces in a target position given traces in another position.
– An evaluation of Retracer using three new datasets containing

accurately labeled traces from Tor entry and exit relays.
– An extensive evaluation of real-world WF that, for the first time,

estimates the performance of classifiers by testing them on entry
traces transduced from real-world exit traces.

– An evaluation methodology that considers individual website
fingerprintability to estimate the real-world threat of WF.

– The first analysis of feature importance for real-world traces.

2 Background and Related Work
2.1 The Tor Network
Tor is a privacy-preserving network of proxy relays that protects
its users’ traffic using onion routing [10, 46]. A Tor client builds
a circuit through three consecutive relays—the entry, middle, and
exit—and then forwards its internet-bound TCP streams through
the circuit. The exit relay proxies the client’s requests from the
circuit to a destination service and then forwards traffic in both

directions. When using Tor Browser, all streams corresponding to
the first-party domain are multiplexed onto the same circuit while
other streams are isolated on separate circuits. We use website to
refer to the first-party domain name of a web connection, which
for such a connection coincides with the domain resolved by the
exit relay when connecting a circuit’s first stream to its destination,
and webpage to refer to a page’s full URL.

Tor packages messages sent by Tor clients and destinations into
cells, each with a fixed size of 514 bytes, before forwarding them
through a circuit. A cell trace 𝐶 is a collection of 𝑁 components
⟨(𝑡𝑖 , 𝑑𝑖 ) or ⊥⟩𝑁𝑖=1 where 𝑡𝑖 is the time that the 𝑖th cell was observed
relative to circuit creation, and𝑑𝑖 ∈ {−1, 1} is the direction in which
the 𝑖th cell was forwarded (1 indicates the cell was sent by the client
toward the exit, and −1 indicates it was sent by the exit toward the
client). 𝐶 [𝑖] = ⊥ indicates that a trace is shorter than 𝑖 cells. Any
of a circuit’s relays may observe and record a cell trace [8].

2.2 WF Threat Model
Fig. 1 summarizes our WF threat model. We consider a WF ad-
versary who is interested in conducting targeted surveillance and
censorship of a select monitored set of websites, and may choose to
launch digital or physical harassment campaigns against Tor users
visiting those sites. We focus on a non-targeting adversary who is
interested in classifying all Tor traffic, no matter the traffic type,
sources, or destinations involved. Defending against non-targeting
adversaries is important in order to protect as many Tor users as
possible against mass-deanonymization attacks and large-scale pri-
vacy violations. An adversary who targets specific Tor users using
knowledge of their behavior or user-specific destinations of interest
is also important, but the smaller scale of a targeted attack limits the
overall harm to users, and we consider it out of scope for this paper.

We consider an adversary who controls an entry-side vantage
point and uses it to collect unlabeled cell traces on connections
into the Tor network. Cell traces are most directly observable by
Tor relays, but previous work has shown that network path van-
tage points between a Tor user and Tor entry relay may also infer
them [51]. Given an observed entry trace, the adversary’s WF task
is to accurately guess the trace’s label, i.e., a destination website,
domain name, or service being accessed by the user.

We assume that the adversary uses ML to train classifiers to as-
sociate cell traces with destination website labels. The WF classifier
training process requires accurately labeled traces so that the clas-
sifiers can form correct associations. However, it is impossible for
the adversary to gather labeled traces by passively monitoring its
entry-side vantage point because Tor hides all destination-related
information using onion routing [46]. Thus, the adversary must
use a different method for collecting training traces.

We assume that the adversary is capable of employing two previ-
ously proposed methods of collecting labeled training traces. First,
the adversary can use automated browser tools to programmati-
cally fetch a set of webpages through Tor and collect the resulting
cell traces [1]. Second, the adversary can run one or more Tor exit
relays and use them to passively observe and measure the naturally
occurring exit-side cell traces and first-party domain labels [8, 23].
The collected traces may be pre-processed (as we do with Retracer)
or else directly used for WF classifier training. Note that cell traces
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Figure 1: In the WF threat model, the adversary may collect
cell traces using an automated browser (Step 1A) and/or an
exit relay (Step 1B), train a WF classifier (Step 2), and then
use one or more entry-side vantage points to observe users’
Tor connections and infer their visited destinations (Step 3).

collected on an exit-side relay will be inconsistent with those an
adversary would observe on the entry-side during a WF attack; our
Retracer method is designed to overcome this limitation.

2.3 WF Attacks and Defenses
Techniques for WF have evolved along with advances in ML. Early
methods used simple statistical techniques [5, 15, 45]. Subsequent
works applied more sophisticated ML algorithms to specified fea-
tures [7, 13, 14, 35, 36, 50]. More recently, deep-learning methods,
which provide automatic feature extraction, have achieved SOTA
performance [4, 8, 22, 33, 34, 39–44].

Throughout this paper, we evaluate WF using Deep Fingerprint-
ing (DF) [43], a powerful classifier based on a deep neural network.
DF does not require manual feature engineering: it is trained only
on a sequence of cell directions. We consider WF with DF for two
main reasons. First, DF is the primary algorithm underlying many
recently published WF attacks, including Deep Fingerprinting [43],
Tik-Tok [40], Triplet Fingerprinting [44], GANDaLF [33], and Net-
CLR [2]. The SOTA attacks continue to build on it, and thus eval-
uating it directly gives us a common baseline for comparison of
many attacks. Second, DF consistently outperforms other WF at-
tacks, including three others we tested in a preliminary experiment
(CUMUL [35], 𝑘-Fingerprinting [13], and Tik-Tok [40]). Thus, DF is
a performance benchmark against which new attacks compete.

Many WF defenses have been proposed, with key techniques that
include adding “padding” traffic [16], delaying cells [12], and split-
ting traffic across separate connections [28]. A fundamental chal-
lenge in designing defenses is balancing their effectiveness against
WF with their performance cost in latency or bandwidth [11]. Syn-
thetic traffic is typically used to evaluate WF defenses, and Wang
argues that a more-conservative “one-page” evaluation is more ap-
propriate for evaluating defenses [49]. Mathews et al. provide a
comprehensive and critical evaluation of WF defenses [32].

2.4 Real-World Considerations
Cherubin et al. [8] were the first to study WF attacks using “genuine”
Tor traces collected from exit relays. They considered a stream-
ing model where WF classifier training and testing is done online
(that is, one trace at a time). However, many WF attacks based
on classical models are not designed to be updated online which
is required in the streaming model. Moreover, their work did not
produce a dataset, limiting reproducibility and preventing a feature-
importance analysis to help interpret their results. Finally, the au-
thors evaluated real-world WF performance using exit-side rather
than entry-side traces while acknowledging the inaccuracy of the
approach and calling for future work to mitigate its impact. We
evaluate the inaccuracy of their approach and our ability to mitigate
it with Retracer throughout this paper.

Recently, Jansen et al. conducted a large-scale exit relay measure-
ment of over thirteen million genuine Tor traces [23]. The resulting
dataset, called GTT23, is the largest WF dataset currently avail-
able [24]. GTT23 contains cell traces and labels that were naturally
produced by real Tor users and collected from real Tor exit relays
over a period of 13 weeks in 2023. Thus, GTT23 is more realistic
than any previous WF dataset and can be used to more accurately
assess the real-world performance of WF attacks. We use Retracer
to transduce the exit traces from GTT23 into entry traces, consid-
ering, for the first time, that WF classifiers must be tested against
entry-side traces to accurately reflect the WF threat model.

Other pre-training and augmentation methods have been pro-
posed to make fingerprinting more practical, but none of them trans-
duce traces from one network position into traces from another as
Retracer does. Oh et al. use Generative Adversarial Networks to
expand the training set in data-limited scenarios [33], while Xie
et al. augment TCP traces via a set of algorithms that simulate the
effects of packet loss and data buffering [52]. Jansen and Wails show
how to fetch Wikipedia pages inside of network simulations to im-
prove control over dataset collection and quantify the effects of
changing network conditions on WF performance [22]. The design
of Retracer was inspired by their use of network simulation to, but
our replay methodology is otherwise orthogonal.

Most closely related to Retracer is the NetAugment approach of
Bahramali et al. [2]. NetAugment aims to make WF classifiers more
robust by providing them with any number of randomly augmented
cell traces that represent unobserved network conditions or settings.
The key idea is that classifiers can train on different variations of
cell traces that might be more representative of the traces they
will be presented when deployed, and the approach was shown
to produce classifiers that are more robust to changing network
conditions or concept drift. Although not specifically designed for
changes in the trace capture position, it is reasonable to expect that
NetAugment might be robust to such changes. Thus, we compare
it to Retracer in §4. One noteworthy limitation of NetAugment is
that its augmented traces do not include timing information, which
some classifiers are designed to utilize [13, 40]. See Appendix A
and the work of Bahramali et al. [2, Alg. 1–4] for more details.

3 Trace Transduction with Retracer
In this section, we present the design of our Retracer method of
obtaining entry cell traces given traces from other positions.
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3.1 Problem Overview
An overwhelming majority of prior WF studies evaluate perfor-
mance using cell traces programmatically collected using auto-
mated browser tools (Step 1A in Fig. 1) [23, Table 3]. While this
method is convenient, it has been shown to produce unrealistic
datasets due to the inherent difficulty in modeling the behavior of
anonymous Tor users, the differences between browser versions
and configuration, and the natural variation in Tor network condi-
tions [2, 8, 23, 25]. More realistic datasets would allow us to produce
more accurate performance estimates of real-world WF attacks.

The exit relay methodology proposed by Cherubin et al. is a
new direction for the study of real-world WF (Step 1B in Fig. 1) [8].
The first-party domain labels and associated cell traces that an exit
relay can observe and passively measure naturally exhibit the pat-
terns associated with real user behavior, real browser configuration
choices, and real network conditions. These real-world traces are
beneficial in two ways. First, the adversary can incorporate them
during training to produce classifiers that can better distinguish
monitored websites from the real destinations visited by users. Sec-
ond, they can be used during testing to better represent real-world
data diversity which may present a more challenging WF problem.
Thus, researchers using real-world traces can better model the WF
problem and better estimate real-world WF performance.

Unfortunately, the exit relay WF methodology carries a criti-
cal limitation: exit relay measurement yields exit-side cell traces,
whereas the adversary conducts WF attacks from an entry-side
position (Step 3 in Fig. 1). The inconsistency between WF training
and testing positions has been shown to reduce classifier accuracy
by as much as 5–18% [8, § 6.4], raising questions about the viabil-
ity of an exit training strategy. Retracer is designed to overcome
this limitation by transducing (i.e., transforming) traces from one
position into traces from another prior to training WF classifiers.

3.2 Cell Trace Augmentation vs. Transduction
We define two functionalities for manipulating cell traces: augmen-
tation and transduction. An important distinction between these
functionalities is that augmentation manipulates traces indiscrimi-
nantly with respect to relay position, whereas transduction manip-
ulates traces with the specific objective of transforming it from a
given relay position to a target position.

Augmentation is a process that maps an input cell trace into
a set of augmented output cell traces. More precisely, a cell trace
augmenter is a functionA(𝐼 , 𝑀) ↦→ ⟨𝑂𝑖 ⟩𝑀𝑖=1 where 𝐼 and𝑂𝑖 are cell
traces of the form ⟨(𝑡𝑖 , 𝑑𝑖 ) or ⊥⟩𝑁𝑖=1 as defined in §2 and 𝑀 is a mul-
tiplicative factor that controls the degree of data expansion. That
is, an augmenter can expand a single input trace 𝐼 into 𝑀 output
traces by repeatedly applying the augmentation algorithm. Aug-
menters may have various objectives; NetAugment is an augmenter
with an objective of increasing the diversity of cell bursts to build
robustness against unobserved network conditions [2] (see §2.4).

Transduction is a process that abstractly functions analogously
to augmentation, except that it also takes as input a position from
which the trace was measured and a target position into which it
should be transformed. More precisely, a cell trace transducer is
a function T (𝐼 , 𝑀, 𝑝𝑖𝑛, 𝑝𝑜𝑢𝑡 ) ↦→ ⟨𝑂𝑖 ⟩𝑀𝑖=1 where 𝐼 , 𝑂𝑖 , and 𝑀 are as
previously defined for augmentation, 𝑝𝑖𝑛 is the position in which 𝐼

Figure 2: Retracer transduces cell traces from one position
(here, 𝑝𝑖𝑛=exit) by replaying them in high-fidelity Shadow
simulations of the Tor network [18, 19] while measuring the
simulated traces from a target position (here, 𝑝𝑜𝑢𝑡=entry).

was measured (e.g., exit relay) and 𝑝𝑜𝑢𝑡 is the target position (e.g.,
entry relay). Retracer is a novel transducer that builds robustness
against inconsistent training and testing positions, but transduction
has never before been explored in the WF literature.

An adversary may use any combination of A(·) and T (·) func-
tionalities to manipulate cell traces in a processing phase that is
run prior to classifier training (i.e., in a new pre-training step imme-
diately preceding Step 2 in Fig. 1). Pre-training can be considered
an extension of the training process, but is not itself an attack.

3.3 Retracer: A Cell Trace Transducer
3.3.1 Overview. We present Retracer, a novel cell trace transducer
that produces cell traces in a target position from traces originally
collected in another position. Our key insight is that cell traces that
are collected in the real Tor network already contain the cell meta-
data (including cell directionality and timing information [23, List-
ing 1]) that would be necessary to reproduce the original sequence
and flow of Tor cells in different network environments. Moreover,
recent advancements in Tor network modeling algorithms and tools
enable us to accurately model a virtual Tor network with a high
degree of fidelity using publicly available Tor data that describes
the state of the network at any given time [20]. From these insights,
we design Retracer to (1) construct detailed Tor network simulation
models that incorporate the state of the network precisely as it
existed during the input trace measurement period; (2) replay the
input cell traces during a high-fidelity network simulation accord-
ing to the input position 𝑝𝑖𝑛 while measuring the corresponding
output traces observed by the simulated nodes in the target position
𝑝𝑜𝑢𝑡 ; and (3) run multiple such simulations to meet the desired data
expansion factor 𝑀 for all input traces.

Retracer uses Shadow to replay traces in Tor network simulations
(see Fig. 2). Shadow is a high-fidelity, discrete-event, packet-level
network simulator that directly executes unmodified Tor binaries
to obtain a high degree of control over the conditions in each simu-
lated Tor network [18, 19]. Because Shadow directly executes Tor,
we can expect that it will faithfully reproduce the end-to-end cell
trace modifications that would naturally occur in the real world,
including both directionality and timing modifications that result
from changes in circuit position and network congestion. In us-
ing Shadow, Retracer draws inspiration from previous work that
shows that the simulator’s high degree of control improves the
explainability of WF datasets and results [22].

3.3.2 Constructing a Simulation Model. To simulate a Tor network
in Shadow, we first construct a simulation model that accurately
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represents the real Tor network as it existed during the period
of measurement using recently published Tor network modeling
tools (i.e., tornettools [20]). The tornettools process uses publicly
available Tor metrics data [47] and recent measurements of Tor
network traffic [21] to construct representative Tor networks. The
modeled characteristics include: network topology, latency, and
bandwidth; Tor relay processes and relay selection weights; and
traffic generation processes that use Markov models to generate
realistic Tor traffic flows. All processes that compose a model may
communicate over Shadow’s simulated network, the accuracy of
which has been extensively validated [17, 19–21].

Retracer extends the tornettools simulation model as follows.
First, a custom Tor patch is used to support Retracer. The patch
enables the simulated Tor relays to measure and store cell trace
metadata records analogous to previous measurement methods [8,
23]. All relays in the 𝑝𝑜𝑢𝑡 position are configured to store cell trace
metadata records during the simulation. The patch also enables
a Tor client to build a circuit to a relay, send a website label, and
connect through the circuit to another process over the relay’s
localhost interface as will be required during trace replay. Second,
Retracer adds new virtual hosts and replay processes to the model.
Each node in the 𝑝𝑖𝑛 position is configured to run a replay server
process that listens for incoming connections from a replay client.
Each new client host is configured to run a replay client process
that makes connections to replay servers through Tor circuits that
end at the 𝑝𝑜𝑢𝑡 position. The replay hosts facilitate replaying a
configurable set of input cell traces in the simulated Tor network
(at a configurable level of parallelism) as described in §3.3.3 below.

3.3.3 Replaying Traces. A primary component in Retracer is a
replay process that reproduces an input cell trace 𝐼 in simulation
exactly as it was observed in the live Tor network. Our replay
algorithm requires cooperation between a replay client 𝑅𝑐 that runs
in simulation coincident with a simulated Tor client, and a replay
server 𝑅𝑠 that runs coincident with a simulated node that runs in
the same position from that in which 𝐼 was observed (i.e., 𝑝𝑖𝑛). To
ease exposition, we assume 𝑅𝑠 runs in the exit relay position and
that both 𝑅𝑐 and 𝑅𝑠 have access to a database containing trace 𝐼 .

Recall that 𝐼 is a cell trace of the form ⟨(𝑡𝑖 , 𝑑𝑖 ) or ⊥⟩𝑁𝑖=1. 𝐼 repre-
sents a transcript that 𝑅𝑐 and 𝑅𝑠 will follow to replay the trace. The
directions 𝑑 in 𝐼 represent sending events: 𝑑 = 1 and 𝑑 = −1 indi-
cates that 𝑅𝑐 and 𝑅𝑠 should send 498 bytes of application payload,
respectively.1 The timestamps 𝑡 in 𝐼 represent the times that the
sending events should be executed. Because the timestamps were
measured from the perspective of a relay, we consider 𝑅𝑠 to be the
time anchor for 𝐼 . That is, the cells in 𝐼 are considered to have oc-
curred relative to 𝑅𝑠 . Thus, 𝑅𝑠 will execute a sending event 𝑑𝑖 = −1
exactly at time 𝑡𝑖 (relative to replay initialization). However, 𝑅𝑐 will
need to execute a sending event 𝑑 𝑗 = 1 prior to time 𝑡 𝑗 in order
to ensure that 𝑅𝑠 observes the cell at 𝑡 𝑗 . Thus, 𝑅𝑐 computes the
network latency 𝑙 between 𝑅𝑐 and 𝑅𝑠 during replay initialization,
and then will proceed to execute each sending event 𝑑 𝑗 = 1 at time
𝑡 𝑗 − 𝑙 . The following summarizes the Retracer replay algorithm:

1Tor prepends a 16 byte cell header. GTT23 traces also contain cell metadata, allowing
Retracer to reproduce stream creation and filter out prior to replay the control cells
that Tor will naturally reproduce as data is forwarded [23].

Handshake: 𝑅𝑐 selects a trace 𝐼 to replay, connects to 𝑅𝑠 through
the simulated Tor network, and sends a handshake message
containing the id of 𝐼 , the current time, and a proposed start
time.𝑅𝑠 computes the latency 𝑙 to𝑅𝑐 , and replies with the current
time and a chosen start time 𝜏 that is consistent with 𝑙 . Upon
receiving the reply, 𝑅𝑐 computes 𝑙 and stores 𝜏 .

Replay: 𝑅𝑠 and 𝑅𝑐 begin iterating through the cell items in 𝐼 at time
𝜏 and 𝜏 − 𝑙 , respectively. Until ⊥ is reached: 𝑅𝑠 sends 498 bytes at
𝑡𝑖 only when 𝑑𝑖 = −1 and then pauses until 𝑡𝑖+1, while 𝑅𝑐 sends
498 bytes at 𝑡 𝑗 −𝑙 only when 𝑑 𝑗 = 1 and then pauses until 𝑡 𝑗+1−𝑙 .

Termination: The replay terminates when 𝑅𝑐 and 𝑅𝑠 have both
sent and received the expected cells from 𝐼 (i.e., they have both
reached ⊥), or upon error.

We implemented the above algorithm in 971 lines of Rust code; it
is used in Retracer simulation models as described in §3.3.2.

3.3.4 Running Tor Network Simulations. Retracer uses Shadow to
run a Tor network simulation according to the constructed simu-
lation model and using the cell trace replay algorithm. Recall that,
during the simulation, input cell traces are replayed according to
the 𝑝𝑖𝑛 position and output cell traces are measured from the 𝑝𝑜𝑢𝑡
position. After the simulation, the recorded output cell traces are
collated into a new dataset for subsequent WF analysis.

The Retracer method may be repeated multiple times in order to
produce enough traces to meet the desired data expansion factor
𝑀 . This may be useful, e.g., to parallelize the transduction of a very
large number of traces. Additionally, Retracer by default sets the
tornettools options network_scale=0.15 and load_scale=2.0 as in
previous work [22], but these values can be adjusted to produce
Tor network models of varying size or with varying levels of traffic
load. See Appendix B for an analysis of the simulated Tor networks.

Key Takeaway: Retracer transduces traces of a given position into
traces of a target position by replaying them in high-fidelity Tor
network simulations. It can enhance classifier training, and help
us more accurately estimate real-world WF attack performance.

4 Transduction Evaluation
In this section, we evaluate Retracer in a likely task of a real-world
adversary: transducing exit-side cell traces prior to training WF
classifiers that will be deployed on an entry-side vantage point.

4.1 Overview
Recall from the threat model in § 2 that the adversary’s goal in
conducting WF attacks is to use a client’s traffic patterns observed
on an entry-side vantage point to predict the visited destination
website and thus deanonymize the client (see Fig. 1). The adversary
would ideally train on the same type of real-world traces that it
will face during an attack, but Tor encrypts traffic such that the
genuine entry traces that are naturally observable by the adversary
are unlabeled. To overcome this limitation, Cherubin et al. propose
collecting real-world traces from exit relays that can observe both
traces and labels, but their method is limited to the exit position
and reduced classifier accuracy by as much as 5–18% [8, § 6.4].

Our goal is to evaluate the extent to which Retracer can mitigate
the performance degradation caused by training on exit-side traces
when a real-world adversary must test on entry-side traces. That is,
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we want to evaluate Retracer’s ability to transduce exit traces into
entry traces (i.e., T (𝐼 , 𝑀, 𝑒𝑥𝑖𝑡, 𝑒𝑛𝑡𝑟𝑦)) prior to classifier training.
Thus, we will train multiple classifiers with and without transduced
traces, and then test them with labeled entry traces.

To properly evaluate transduction performance, we require both
labeled entry and labeled exit traces collected from the Tor network.
With both types of traces, we can compare the difference between
transduced exit→entry traces produced by Retracer and true entry
traces from the real network. Unfortunately, no existing WF dataset
contains both types of traces. GTT23 is the best candidate with
over 13 million real-world traces [23, 24], but it contains only exit
traces. (We defer a real-world WF performance evaluation with
GTT23 to §5, after we first establish Retracer’s efficacy.) Because no
existing dataset fulfills our requirements, we construct new datasets
of our own cell traces for which we can provide ground-truth labels
for both entry- and exit-side observations.

4.2 Dataset Measurement
We construct a set of URLs to use for measurement as follows.
First, we use the Wikipedia random page generator2 to fetch 1,000
random Wikipedia pages. On each random page, we scan all <a>
tags for href attribute values that start with “http” and exclude
“wikipedia” or “wikimedia”; we recorded 22,463 such URLs. Sec-
ond, we bucket the recorded URLs by their domain name, sample
1,000 such names, and randomly choose one URL from the bucket
corresponding to each sampled name. The resulting URLs point to
webpages of news, sports, and other typical internet sites. Third, we
fetch each of the 1,000 URLs once using tor-browser-selenium [1],
record a screenshot of the browser window, and manually filter out
URLs that resulted in error pages or otherwise apparently failed to
properly load. Our final set contains 494 valid URLs.

We conduct three independent measurements through the live
Tor network over the period of a week in 2023-08 using a client
machine hosted in Chameleon Cloud [26] and a measurement relay
running on a machine hosted in NY, USA. The client is configured
to concurrently fetch the 494 URLs through Tor (using 10 worker
processes) many times each while pinning our measurement relay
as either the entry relay (in the entry1 and entry2 measurements)
or the exit relay (in the exit measurement) for all built circuits. The
client and relay run our patched version of Tor from §3.3.2, which
enables the client to send a special control cell with the true website
label and enables the relay to record labeled cell traces only for
those circuits created by our client.

Following each of the three measurements, we collect and clean
the data recorded by our relay. First, we discard any cell trace for
which we observe a second trace to the same label within 30 minutes,
which suggests at least one error/retry since our worker pool takes
longer than an hour to fetch all URLs from our set. Second, we
discard traces with a cell count that is less than 25 or less than
Tukey’s lower fence for the label (i.e., Q1 − 1.5 · IQR where Q1
and IQR are computed across all traces of a label). Finally, we use
random sampling to balance the number of traces per label in the
final datasets. The resulting datasets are summarized in the top half
of Table 1, where “Tor” is a label that indicates the source of the
fetched URLs. We discuss our ethical considerations in Appendix C.

2https://en.wikipedia.org/wiki/Special:Random

Table 1: Datasets used to Evaluate Trace Transduction

Dataset URLs×Traces Description

Tor(entry1 ) 444×60 Live Tor, pinned entry relay
Tor(entry2 ) 472×40 Live Tor, pinned entry relay
Tor(exit) 423×60 Live Tor, pinned exit relay

Retracer(𝑀 ) 423×60×𝑀 T(Tor(exit), 𝑀, 𝑒𝑥𝑖𝑡, 𝑒𝑛𝑡𝑟𝑦)
NetAug(𝑀 ) 423×60×𝑀 A(Tor(exit), 𝑀 )
T: transducer, A: augmenter, 𝑀 : data expansion factor (see §3.2)

4.3 Dataset Transformations
4.3.1 Transducing with Retracer. We apply the Retracer methodol-
ogy described in §3.3 to transduce the exit traces from Tor(exit) into
entry traces. In order to experiment with multiple values of 𝑀 (the
data expansion factor), we apply the Retracer methodology across
19 simulation models for which we vary the tornettools load_scale
value. Previous work used a load_scale value of 2.0 as a baseline, and
found that using a range of values improves trace diversity and clas-
sifier robustness [22]. Thus, we use load_scale values in the range
[1.38, 2.9] (specifically, each load value ℓ ∈ ⋃29

𝑖=20{𝑖/10, 40/𝑖}). We
replay each cell trace from Tor(exit) once in each of our 19 simu-
lated Tor networks, and then we collate all entry-side cell traces for
subsequent analysis. See Appendix B for details about the simulated
network performance characteristics and simulation resource costs.

The Retracer transducer function T (𝐼 , 𝑀, 𝑒𝑥𝑖𝑡, 𝑒𝑛𝑡𝑟𝑦) is imple-
mented using the simulated entry-side cell traces that are correlated
with the unique identifier of the input trace 𝐼 (we have 19 such
entry-side traces per input trace). When 𝑀 = 1, T (·) returns the
correlated entry-side cell trace from the baseline simulation. For
𝑀 > 1, T (·) returns the baseline correlated entry trace along with
the entry trace from each of the 𝑀 − 1 most loaded simulations.
We prefer traces from the more loaded networks since previous
work found them to produce more robust classifiers [22]. The above
strategy yields the dataset Retracer(𝑀) as shown in Table 1.

4.3.2 Augmenting with NetAugment. Our evaluation will also con-
sider NetAugment as it is the most recent and most closely related
method for trace augmentation. Recall that we describe NetAug-
ment in §2.4. Bahramali et al. present its algorithms in more de-
tail [2] and released an implementation on Github [3].

The NetAugment augmenter functionA(𝐼 , 𝑀) is implemented as
follows. First, NetAugment is initialized using Tor(exit), from which
the initializer constructs a burst size distribution that can later be
queried during augmentation. The NetAugment code exposes an
augment(·) function that takes a cell trace as input and outputs a
randomly augmented trace. We implement the augmenter A(𝐼 , 𝑀)
by repeatedly calling augment(𝐼 ) a total of 𝑀 times for an input
trace 𝐼 (as with Retracer, we consider each integer value in the
range 1 ≤ 𝑀 ≤ 19). We apply A(·) to all traces in Tor(exit) and
store the output dataset NetAug(𝑀) as shown in Table 1.

4.4 Evaluation Methodology
We carry out an evaluation of the efficacy of Retracer as a transducer
using the datasets summarized in Table 1. Our objective is to under-
stand how well the entry traces produced by Retracer represent the
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Figure 3: Cell trace transduction evaluation methodology.

entry traces that are naturally produced in the real Tor network for
the same set of webpages. Thus, we take the exit traces from the
real Tor network (Tor(exit)), transduce them into entry traces with
Retracer (Retracer(𝑀)), and then compare the transduced traces
with real entry traces from the real Tor network (Tor(entry2)).

The scoring metric we use to measure efficacy is the accuracy in
performing a WF classification task. We considered using other met-
rics to compare the difference between Retracer entry traces and
real Tor entry traces including Levenshtein (i.e., edit) distance [8],
but we found such metrics are indirectly related to the feature im-
portance of a trace. For example, the earlier part of a trace generally
carries more information than the later part [29], but subsequence
weighting is not possible with many distance functions and a valid
weight assignment is largely unknown. Because we expect that
Retracer output would be used in a downstream WF task, it is more
direct and consistent to also use WF as a scoring metric.

We highlight that we do not consider this evaluation to accu-
rately estimate the performance of real-world WF attacks against
real Tor users: we do not expect that synthetic datasets capture the
true diversity in the traces that would result from real users using
the real network. However, this evaluation is informative in under-
standing Retracer’s efficacy and for comparing trace transformation
methods considering a common baseline. We defer a real-world
WF evaluation to §5, after first establishing the effectiveness of the
Retracer methodology below.

4.4.1 Training. We train two types of WF classifiers chosen as
baseline representatives of deep learning WF approaches (see §2.3).
Deep Fingerprinting (DF) [43] is based on a deep neural network
that does not require manual feature engineering and requires only
cell directions, and Tik-Tok [40] uses the identical method of DF
but requires both cell direction and time. We exclude other classical
WF methods because prior work has shown that they are not robust
to natural changes in the network over time [22].

The classifiers are trained in a multiclass closed-world classifi-
cation setting in which they have full knowledge of all possible
class labels and learn how to associate examples of each class with
its unique label. Prior to training, each training set is split such
that 80% of the traces are used to fit the classifier models and 20%
are used for model validation; the split is stratified by class label
such that an equal number of traces of each class is present in both
the training and validation sets. During training, we employ the
published implementations (and optimized hyperparameters) of DF
and Tik-Tok. However, we tune the batch size by training a classifier
for every batch size 𝑏 ∈ {64, 128, 256, 512}. Additionally, DF and
Tik-Tok are trained for 100 epochs, but to avoid overfitting we use

Table 2: Classifier Accuracy in a Multiclass Closed World
Classification Experiment when Tested on Tor(entry2)

Method Training set DF Tik-Tok

Ideal Tor(entry1 ) 89% 87%

Retracer Retracer(19) 86% (↓ 3 pp) 85% (↓2 pp)
NetAug NetAug(19) 70% (↓19 pp) ⊥
None Tor(exit) 76% (↓13 pp) 79% (↓8 pp)

Classifier Properties→ Time-Oblivious Time-Aware

⊥: Timing information required by classifier but unavailable in data.

an early stopping strategy that stops training if the validation loss
metric has not improved for five consecutive epochs. The classifiers
are trained in the following scenarios as depicted in Fig. 3:
Ideal: Upper bound for reference; classifiers are trained on the

Tor(entry1) dataset (creation of which requires cooperation from
clients since otherwise training labels are encrypted).

Retracer: Our Retracer transducer is applied to traces from Tor(exit);
classifiers are trained on the entry traces from Retracer(19).

NetAug: The NetAug augmenter [2] is applied to Tor(exit); classi-
fiers are trained on the augmented traces from NetAug(19).

None: No cell transformation is applied; classifiers are trained di-
rectly on traces from Tor(exit), as in the OnlineWF method [8].

4.4.2 Testing. The trained classifiers are tested in a multiclass
closed-world classification experiment in which each classifier at-
tempts to predict the website label associated with each test trace.
Tor(entry2) is used as a test set for every classifier; it was collected
independently from the other datasets and its traces are never used
during training. During testing, we only attempt to predict traces
for which the class label was present during training. Because our
test set is balanced across class labels, we use accuracy (the fraction
of correct predictions made by the classifier) as a measure of per-
formance. For each tested scenario, we report the results from the
classifier with the batch size resulting in the highest test accuracy.

4.5 Results
The results of our experiment are shown in Table 2. We find that
training on entry traces as in the ideal scenario yields the high-
est accuracy across all training sets as expected. The classifiers
that are trained on transduced traces from Retracer outperform
the other augmentation strategies: DF improves by 10 percentage
points (pp) relative to training with no augmentation (76→86%)
and achieves within 3 pp of ideal accuracy, while Tik-Tok improves
by 6 pp (79→85%) and achieves within 2 pp of ideal accuracy. Com-
paratively, the DF classifiers that are trained on augmented traces
from NetAugment perform the worst of those tested, losing 19 pp
(89→70%) relative to the ideal scenario. Moreover, NetAugment
performs 6 pp lower than training directly on exit traces with no
augmentation (76→70%), suggesting that randomly splitting, merg-
ing, or modifying bursts may not be strongly representative of
real-world end-to-end trace variation. Finally, training without aug-
mentation directly on the exit traces as suggested by the OnlineWF
method performs 8–13 pp lower than ideal and is consistent with
previous findings [8, Fig. 11].
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Figure 4: DF classifier accuracy in a multiclass closed-world
experiment when training on datasets transduced with an
increasing data expansion factor𝑀 and tested on Tor(entry2).

We further analyze the accuracy of classifiers trained using out-
put from the augmenters for 𝑀 ∈ ⋃19

𝑖=1{𝑖} (which produces in-
creasing amounts of training data). Here we limit our evaluation to
the DF classifier, but otherwise use the same experimental setup
as previously described. Fig. 4 shows slightly positive trends in
accuracy for classifiers trained using both NetAug and Retracer
training datasets. The classifier trained on Retracer(16) achieves
the highest Retracer accuracy (86.4%) while the classifier trained
on NetAug(17) achieves the highest NetAug accuracy (70.9%). Clas-
sifiers are consistently about 15 pp more accurate when trained
using the Retracer than when trained using NetAugment.

Key Takeaway: Retracer is effective at transducing exit→entry
traces, yielding performance estimates that are within 97% of the
ideal scenario. Thus, Retracer is a viable method for obtaining
realistic entry traces for estimating real-world WF performance.

5 Real-World WF Evaluation
In this section, we use real-world exit traces and Retracer to produce
the best available estimate of real-world WF performance.

We highlight the advantages of including real-world exit traces
in the WF training process. First, real exit traces will often naturally
contain real examples of the websites in the adversary’s monitored
set (i.e., the positive class). These examples will form the most-
similar representation of the monitored websites as they will be
presented at testing time, and allowing a classifier to learn from
them should improve its ability to differentiate them. Second, and
perhaps more importantly, even if the positive class is not observed
in the real-world data, the presence of examples of the unmonitored
background websites (i.e., the negative class) will still be informative
and help the classifier learn useful decision boundaries.

It is reasonable to expect that an adversary would want to utilize
real-world exit traces given the significant advantages. Although
one previous study has also considered that an adversary could
train on real-world exit traces [8], they unrealistically tested against
exit traces too which is inconsistent with the WF threat model. Our
evaluation is the first to consider that exit-trained classifiers must
be tested against entry-side traces to be realistic (see Fig. 1). We also
consider than an adversary could use Retracer prior to training in
order to improve WF performance (as we established in §4).

Table 3: Datasets used to Evaluate Real-World WF

Dataset Description

GTT23(𝑊 ) GTT23 traces observed on all days of each week 𝑤 in
a set of weeks𝑊 : {𝑤 |𝑤 ∈ [1, 13] } [23]

GoodEnough( ·) GoodEnough traces from Jan or Feb, 2020 [38]
BigEnough( ·) BigEnough traces partitioned by page using random

assignment and a 60/40 split threshold [32]

Retracer(𝑊,𝑀 ) T (GTT23(𝑊 ), 𝑀, 𝑒𝑥𝑖𝑡, 𝑒𝑛𝑡𝑟𝑦) (see §3.2)

5.1 Methodology
5.1.1 Datasets. Our evaluation considers multiple input datasets
as shown in Table 3, with a particular focus on real-world exit
traces from the GTT23 dataset [23]. Recall from §2.4 that GTT23 is
the largest published WF dataset with over 13 million cell traces
measured over a period of 13 weeks in 2023. GTT23 is also the only
WF dataset containing traces that were naturally produced by real
Tor users and measured by real-world exit relays. GTT23 was very
recently made available to WF researchers [24], and we are the first
to use it to study real-world WF. The characteristics of GTT23 were
previously evaluated in detail [23].

GTT23 contains only labeled exit traces. We are able to train clas-
sifiers (1) on entry traces that are transduced from the exit traces by
Retracer as described in §3, and (2) directly on the exit traces as in
the OnlineWF method of Cherubin et al. [8]. However, GTT23 does
not contain labeled entry traces, which are needed in order to real-
istically evaluate the trained classifiers in the WF threat model. We
address this limitation by separating GTT23 data into independent
training and testing sets, and transducing the exit testing traces
into entry testing traces using Retracer. We then test classifiers
against entry traces from Retracer(𝑊,𝑀 = 1) to better approxi-
mate the problem facing a WF adversary while still maintaining
the complexity and diversity found in the GTT23 traces.

The Retracer dataset is built following the Retracer methodol-
ogy from §3 to transduce GTT23 exit traces into entry traces. In
order to experiment with multiple values of 𝑀 (the data expan-
sion factor), we apply the Retracer methodology across simulation
models for which we vary the tornettools load_scale to each value
ℓ ∈ ⋃7

𝑖=0{2 + 𝑖
10 }. We replay each GTT23 cell trace in a simulated

Tor network for each value of ℓ . The Retracer transducer func-
tion T (𝐼 , 𝑀, 𝑒𝑥𝑖𝑡, 𝑒𝑛𝑡𝑟𝑦) is implemented using the simulated entry
traces that are correlated with the unique identifier of the input
trace 𝐼 such that, when 𝑀 =𝑚, T (·) returns the𝑚 correlated entry
traces from the simulations configured with ℓ ∈ ⋃𝑚−1

𝑖=0 {2 + 𝑖
10 }.

We also consider traces from two additional datasets, GoodE-
nough [38] and BigEnough [32]. GoodEnough and BigEnough are
“synthetic” datasets in that they were programmatically collected
with automated browsers, but they both include traces from many
different webpages per website to help improve data diversity and
thus are good candidates for comparison to GTT23 (see Appendix D
for a full description).

5.1.2 Training. We train Deep Fingerprinting (DF) [43] classifiers
(see §2.3) in a binary open-world setting in which the classification
task is to associate examples of a selected website label with the
positive class and the remaining examples of unselected labels with

 

131



Repositioning Real-World Website Fingerprinting on Tor WPES ’24, October 14, 2024, Salt Lake City, UT, USA

the negative class. In the open-world setting, classifier training and
testing sets are constructed such that some websites in the negative
class only contribute traces to the testing set, which is consistent
with the challenge faced by a real-world adversary.

Our evaluation considers a new perspective for real-world WF
by forming a positive class around examples of individual websites.
In a prior evaluation of WF using exit traces, Cherubin et al. con-
sidered the positive class to contain a number of different labels
of a monitored set of websites to provide an average performance
metric [8]. However, this method weakens our ability to explain
why a particular classifier performs better or worse than another;
a poorly performing website with a high base rate can reduce the
average performance for the entire positive class, obfuscating the
potentially high risk of WF against individual websites. In our eval-
uation, we train a unique classifier for each of a set of websites
in order to isolate individual website performance and improve
explainability in our subsequent feature importance analyses. Thus,
our evaluation demonstrates the viability of an advantageous case
for the adversary since classifying larger monitored sets should be
more difficult. In practice, an adversary that is interested in multiple
websites could combine single-website classifiers in an ensemble.

Prior to training, we construct training sets using a data selection
function Train(𝐷,𝜔) ↦→ ⟨(𝑤𝑖 ,𝐶𝑖 )⟩, where 𝐷 is an input dataset of
labeled cell traces,𝜔 is a chosen positive class website label, and the
output is a vector of labeled website (𝑤 ) cell traces (𝐶). Train(·) first
selects from𝐷 traces with at least 1,000 cells (≈496 KB) to exclude er-
roneous and other short traces that are unlikely to carry full website
transfers according to previous work [23]. To limit the amount of
label imbalance among those composing the negative class, Train(·)
then randomly samples traces by label such that each negative class
website contributes no more than 10 example traces during training.
The resulting vector is used to train a classifier on 𝜔 .

During training, the selected training set is split such that 80% of
the traces are used to fit the classifier models and 20% are used for
model validation; the split is stratified by class label such that an
equal number of traces of each of the positive and negative classes
is present in both the training and validation sets. The training set’s
positive class examples are then repeated such that the total number
of traces in both classes are equal. We train each classifier using the
optimized DF hyperparameters published by Sirinam et al., which
include training for 30 epochs with a batch size of 128 [43, Table
1]. For each positive class 𝜔 , the final classifier after 30 training
epochs is stored and used to evaluate performance during testing.

5.1.3 Testing. We construct testing sets using a data selection func-
tion Test (𝐷) ↦→ ⟨(𝑤𝑖 ,𝐶𝑖 )⟩ that is defined similarly to Train(·), in-
cluding the 1,000 cell limit for rejecting short circuits but excluding
the random sampling and filtering of traces by label. Note that the
Test (·) selector does not differentiate based on a website label 𝜔 .

We measure test performance using precision and recall to ac-
count for the effects of low base rates on performance. Precision
is tp/(tp + fp) where tp and fp are the number of true and false
positives, respectively. Recall is tp/(tp + fn) where fn is the number
of false negatives. We also use the 𝐹1 score (the harmonic mean of
precision and recall) as a single, overall performance metric. When
reporting these metrics, we exclude results from the website classi-
fiers for which we did not observe at least 30 positive examples in

the testing set in order to ensure statistical strength in our estimates.
We also exclude values for which a metric is undefined (because
the denominator is zero). All metrics yield values between 0 and
1, with values closer to 1 indicating a better classifier. Testing is
always performed with traces that were observed subsequent to
the training traces, following best practices [37].

5.2 Evaluating Real-World WF
In this section, we evaluate the performance a WF adversary might
expect when utilizing real-world traces that are naturally created
by real Tor users and passively observed by exit relays (Step 1B
in Fig. 1). Here, we consider that an adversary would want to be
robust against the inconsistent training (exit) and testing (entry)
positions, and so it uses Retracer to transduce the exit traces prior
to training to mitigate this inconsistency. As previously discussed,
testing is performed on entry traces to accurately represent the
real-world threat model.

In our evaluation, we use Retracer traces replayed from GTT23’s
high-volume weeks ({1, 7, 13}) for training, and traces replayed
from GTT23’s low-volume weeks ([2, 6] ∪ [8, 12]) for testing. More
precisely, we define Experiment(𝑊Train, 𝑀,𝑊Test) as follows:
(1) Ω ← labels from Test (GTT23(𝑊Train)) with ≥ 100 traces
(2) ∀𝜔 ∈ Ω: train a model on Train(Retracer(𝑊Train, 𝑀), 𝜔)
(3) Test each trained model on Test (Retracer(𝑊Test, 1))
We conduct an experiment in which we train on traces from week
1 and test on traces from weeks 2–4 while varying Retracer’s
data expansion factor: Experiment({1},𝑚, {2, 3, 4}) ∀𝑚 ∈ {1, 4, 8}.
We then repeat the experiment using traces from weeks 7–10:
Experiment({7},𝑚, {8, 9, 10}) ∀𝑚 ∈ {1, 4, 8}. Across the six exper-
iments (two for each value of 𝑚), we trained and tested 2,511 DF
classifier models using more than 2,336,549 unique traces.

5.2.1 WF Results. Fig. 5 shows DF classifier performance for each
of the three values of the data expansion factor 𝑀 . We observed at
least 30 test traces for 309 of 404 websites targeted for training in
week 1, and for 343 of 433 websites targeted for training in week 7.
Thus, each CDF plotted in Fig. 5 shows performance over 652 total
individual website classifiers.

Overall, we find that WF performance varies greatly across web-
sites. Although the classifiers for some websites perform well with
precision or recall scores at or near 1.0, most classifiers perform
poorly with fewer than 20% and 45% of the classifiers achieving
greater than a 0.75 precision and recall score, respectively, and
many achieving scores of 0.0. Moreover, the median 𝐹1 score is at
most 0.35 across all three values of𝑀 . Our results indicate that most
of our trained classifiers are unlikely to be viable in a real-world
WF attack since they would quickly be overrun with false positives.

Our results contradict those from prior WF studies considering
less realistic threat models than we do. For example, Cherubin et al.
study average performance across sets with different numbers of
monitored websites and found that small monitored sets are fin-
gerprintable while large sets are not [8]. However, our study of
individual website fingerprintability reveals that even small moni-
tored sets may not be fingerprintable if they are entirely composed
of low-performing websites. We draw additional comparisons to
prior work in §5.3 and §5.4.
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Figure 5: Distribution of precision and recall scores for DF
classifiers trained and tested on entry traces from Retracer
over three data expansion factors𝑀 .

5.2.2 Feature Importance. We now present the first analysis of the
important features of real-world traces that most affect classification
performance. Our analysis is novel because prior work did not have
access to both real-world traces and their labels [8, § 6.3].

Because deep learning classification models do not use human-
interpretable features, we conducted a meta-analysis using per-
domain summary statistics computed from the traces of each do-
main. For each of the 652/837 websites that was observed while test-
ing with Test (Retracer({2, 3, 4}, 1)) and Test (Retracer({8, 9, 10}, 1))
we trained a random forest regressor to predict each target clas-
sifier’s overall achieved recall, precision, and 𝐹1 score using the
statistics of the websites’ traces as features. The set of possible trace
features we considered were drawn from prior work [13, 29]. The
regressor’s split points are used to identify important features [6].

Table 4 shows the top 5 features identified by our analysis pre-
dicting classifier performance. In the table, “num traces” means the
total number of traces in the dataset, “count incoming“ means the
number of server-to-client3 cells in the specified cell interval, and
“CUMUL 𝑥” means the cumulative sum of cell direction values after
the circuit is 𝑥% complete [35]. The value 𝜌 shows the feature’s
Spearman rank correlation with classification performance, which
indicates a feature’s monotonic relationship with performance and
takes on values in the range [−1, 1]. The correlation value 𝜌 is posi-
tive if an increase in the feature’s value improves performance and
is negative if a decrease in the value degrades performance. The
table shows that, for real-world traces, characteristics of the front
of the trace (i.e., the first few cells) are highly predictive of overall
performance. For example, increases in standard deviation of the
number of server-to-client cells in the first 10 cells has a strong neg-
ative correlation with overall 𝐹1 score. Our results also show that
website popularity is an important dataset characteristic; more pop-
ular websites are classified with higher recall, possibly due to the
larger number of traces that can be used during classifier training.
In Appendix E, we give an expanded listing of feature importances
in Table 5 and a description of all features we considered.

We visualize the effects of two important trace features on WF
performance: the number of traces of the positive class during
training, and the variation in the length of the positive class traces.

3Prior work considers both incoming and outgoing cell counts, but we use only
incoming counts since outgoing counts are simply the numerical complement.

Table 4: Important per-website trace features. The value 𝜌
shows the feature’s rank correlation with performance.

Rank Feature Importance 𝝆

Re
ca

ll

1 Num traces .26 .49
2 Avg of Count Incoming [0, 10) .21 .50
3 Stddev of Count Incoming [0, 100) .14 −.44
4 Stddev of Count Incoming [0, 10) .03 −.51
5 Stddev of Count Incoming [0, 30) .03 −.51

Pr
ec

isi
on

1 Stddev of Count Incoming [0, 10) .27 −.50
2 Avg of Count Incoming [0, 10) .10 .51
3 Stddev of CUMUL 10 .04 −.22
4 Max of Count Incoming [0, 100) .04 −.18
5 Median of Length of Longest Burst .02 .06

𝐹
1

1 Stddev of Count Incoming [0, 10) .28 −.54
2 Avg of Count Incoming [0, 10) .11 .54
3 Num traces .05 .22
4 Stddev of CUMUL 10 .05 −.25
5 Median of Count Incoming [0, 10) .04 .49
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Figure 6: Distribution of the 𝐹1 score when training and test-
ing on entry traces obtained from Retracer with 𝑀 = 4. Re-
sults are categorized by the trace count (“cnt”) and relative
variance of trace lengths (“var”) per website.

Fig. 6 shows the distribution of performance for classifiers that are
separated by the associated website feature values into three bins
as shown in the legend. We find that the median 𝐹1 score increases
from 0.25 for websites with at most 250 example traces to 0.70 for
websites with more than 5,000 traces. In other words, the median
𝐹1 score increased by 0.45 when 20× as many traces were available
during training. When grouped by the variation in trace length
(computed here as the relative standard deviation), the median 𝐹1
score increases from 0.23 for websites with lengths that vary by
more than 600 cells to 0.56 for websites with lengths that vary
by at most 300 cells. Lower trace length variation indicates that a
website may have more consistent patterns that are easier to learn,
generally resulting in classifiers that achieve higher 𝐹1 scores.

5.2.3 Temporal Analysis. We next conduct a temporal analysis
across the 13 weeks of GTT23 data to understand the effects of
concept drift on WF classifier performance. Note that previous
work considered a time span of at most one week [8].
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Figure 7: Temporal concept drift analysis: we train on traces
from week 1 and test on traces from subsequent weeks. The
circles and dashed red line show the weekly medians and
trendline, respectively. The horizontal lines mark the min,
Q1, Q3, and max while violin width estimates density.

Our evaluation considers the 404 classifiers trained using week
1 traces and tested on a weekly basis for each of the following 12
weeks. That is, we perform 12 experiments: Experiment({1}, 4, {𝑤})
∀𝑤 ∈ [2, 13]. We focus on the classifiers trained with traces from
Retracer’s 𝑀 = 4 setting here and in the remainder of this section
because it achieved the greatest mean 𝐹1 score. Following our prior
methodology, for each test week we report the results across the
training websites for which we observed at least 30 examples of
the positive and negative classes during that week; this process
resulted in the removal of at least 63/404 websites (week 7) and
at most 278/404 websites (week 10) for which we do not have a
statistically rigorous estimate.

The results of our temporal analysis of 𝐹1 scores are shown
in Fig. 7, wherein the circles and dotted red line show the weekly
medians and trendline, respectively. We observe that the density of
the weekly distributions (represented visually by the width of the
violins) shifts downward over time, especially during weeks 7–13.
The trendline demonstrates a strong statistical correlation of the
downward shift in the medians (𝑟 = −0.99), where the median 𝐹1
score decreases from a maximum of 0.47 in week 4 to a minimum of
0.21 in week 13. Our analysis again demonstrates the challenging
task of WF against real-world GTT23 data: few of the classifiers that
perform well in week 2 still achieve an 𝐹1 score above 0.5 in week
13. Note that it would be natural for an adversary to continuously
collect exit traces and periodically retrain its classifiers in order to
mitigate concept drift, but this does come at a cost.

Key Takeaway: We conduct the first WF evaluation that uses real-
world GTT23 data while testing on entry-side traces, and present
the best available estimate of real-world WF performance. We
find low WF performance relative to previous work, even when
using Retracer to build robustness to the trace capture position.

5.3 Comparison to Online WF
In the OnlineWF method of Cherubin et al., the adversary continu-
ously trains WF classifiers on real-world exit traces in real time [8],
and in the WF threat model those classifiers should be tested on en-
try traces. Thus, we evaluate the performance of classifiers trained
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Figure 8: Classifier performance when training on exit traces
as in OnlineWF [8] and training on entry traces transduced
from the exit traces by Retracer.

in the OnlineWF scenario by training classifiers directly on the
exit traces from GTT23 and testing them on entry traces as they
would be in a real-world WF attack. More formally, we define the
experiment OnlineWF(𝑊Train,𝑊Test) as follows:
(1) Ω ← labels from Test (GTT23(𝑊Train)) with ≥ 100 traces
(2) ∀𝜔 ∈ Ω: train a model on Train(GTT23(𝑊Train), 𝜔)
(3) Test each trained model on Test (Retracer(𝑊Test, 1))
We use OnlineWF({1}, {2, 3, 4}) and OnlineWF({7}, {8, 9, 10}) to
evaluate the OnlineWF performance we expect can be achieved in
the real world. Across the two experiments, we trained and tested
837 DF classifiers using more than 709,339 unique traces.

We compare the results from the two OnlineWF(·) experiments
above to the results from Retracer in §5.2 (the two Experiment(·)
runs with 𝑀=4) to show how the Retracer method improves upon
the state-of-the-art method of training on real-world traces. Fig. 8
compares classifier performance across the 652 websites for which
we have statistically rigorous estimates (i.e., at least 30 testing exam-
ples); larger values (→ on the x-axis) indicate better performance.
We plot the distribution over the absolute 𝐹1 scores of the classifiers
in the left subplot. We observe an appreciable improvement in 𝐹1
scores when using Retracer: the median 𝐹1 score is 0.34 for Retracer
and 0.1 for OnlineWF, a difference of 0.24. We plot the difference
between the Retracer and OnlineWF scores on a per-website basis
in the right subplot. We observe that the Retracer method outper-
forms the OnlineWF method for over 85% of the websites, with an
increase in the 𝐹1 score of 0.91 in the best case.

We remark that Cherubin et al. did not have access to labeled
entry traces and thus could only estimate OnlineWF performance.
In a simplified evaluation using synthetic traces they found that
incorrectly testing on exit rather than entry traces resulted in an
overestimation of classifier accuracy of 5–18% [8, § 6.4]. Using
GTT23, we reevaluated the accuracy of their estimation method
and found that performance is overestimated for 90% of the websites
we tested: 0.17 in the median and ranging from near zero to a worst
case of 0.93. This range of overestimation is much greater than the
previously estimated 5–18%. See Appendix F for more details.

Key Takeaway: Classifiers trained on Retracer entry traces out-
perform those trained on GTT23 exit traces when considering
that they will be tested on entry traces in a real-world WF attack.
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Figure 9: Performance of the classifiers trained and tested
with each dataset. “Synthetic” traces lead to better perfor-
mance than Retracer traces (transduced from GTT23).

5.4 Comparison to WF with Synthetic Datasets
In the previous sections, we studied WF by (1) considering traces
created by real Tor users and measured by exit relays, and (2) testing
on entry traces to more accurately reflect the WF threat model. In
applying Retracer to GTT23, we believe our evaluation yields the
best available estimate of the performance an adversary can achieve
when directing WF attacks at real Tor users. In this section, we
compare the real-world WF performance estimated with Retracer
and GTT23 to the WF performance estimated with BigEnough and
GoodEnough, two recent “synthetic” datasets that were program-
matically collected using automated browsers (see §5.1.1).

5.4.1 Isolated Datasets. We first consider the performance that is
achieved by isolating the datasets and independently evaluating
WF on each. To perform the evaluation, we define the experiment
Synthetic(𝐷Train, 𝐷Test) as follows:
(1) Λ← labels from Test (𝐷Train) with ≥ 100 traces
(2) ∀𝜔 ∈ Λ: train a model on traces from Train(𝐷Train, 𝜔)
(3) Test each trained model on traces from Test (𝐷Test)
We conduct a Synthetic(BigEnough(60), BigEnough(40)) experi-
ment in which we use 72,092 unique traces to train and test 93
classifiers, and a Synthetic(GoodEnough(Jan),GoodEnough(Feb))
experiment in which we use 24,476 unique traces to train and test
59 classifiers. We compare the performance evaluated in these iso-
lated experiments to the performance we independently evaluated
with Retracer in §5.2 (the two Experiment(·) runs with 𝑀 = 4). The
results are shown in Fig. 9. Overall, we find that the DF classifiers
perform much better when trained and tested against synthetic
traces than when trained and tested against Retracer traces. For ex-
ample, the worst case and median precision is respectively 0.11 and
0.52 when testing the BigEnough classifiers, compared to just 0.0
and 0.27 when testing the Retracer classifiers. Similarly, the worst
case and median recall is respectively 0.84 and 0.97 when testing the
BigEnough classifiers, compared to just 0.0 and 0.63 when testing
the Retracer classifiers. The GoodEnough classifiers tend to achieve
higher precision and lower recall than the BigEnough classifiers,
but the results support a similar conclusion: DF is considerably
less effective at learning how to differentiate GTT23 traces than
traces from the synthetic datasets, which may lead researchers
using synthetic data to overestimate real-world WF performance.

5.4.2 Synthesized Datasets. Having found that WF is more chal-
lenging when faced with real-world data than with synthetic data,
we now evaluate a training strategy in which the adversary sup-
plements real-world traces with additional synthetic traces. The
real-world traces are useful in teaching the classifier how to dis-
tinguish both positive and negative classes that it will encounter
at test time, while synthetic traces may reinforce the classifier’s
concept of the chosen monitored set. Due to space, we summarize
our experiment and results here (see Appendix G for full details).

We evaluate the effects of synthesized data on WF by training
on an isolated Retracer dataset and an isolated BigEnough dataset
as described in the previous section, and a third Combined dataset
that is a concatenation of the two. Consistent with prior work [8,
Fig. 4], we find a comparable performance distribution for both the
Retracer and Combined classifiers, while performance for classifiers
trained on the synthetic BigEnough dataset is poor with a maximum
𝐹1 score of just 0.10. We further extend the analysis to consider the
absolute difference in performance on a per-website basis, a new
perspective. We find that the classifiers trained on the Combined
dataset performed just slightly better than the Retracer dataset
alone for about half of the websites, where in the best case the 𝐹1
score increases by 0.17 and in the worst case it decreases by 0.12.
More work considering more recent synthetic datasets is needed to
understand if this result is statistically significant.

Key Takeaway: WF classifiers trained on the BigEnough and Good-
Enough synthetic datasets broadly overestimate the performance
that can be achieved when training and testing on real-world
traffic patterns from Retracer, while supplementing real-world
training data with synthetic examples offers questionable benefit.

6 Conclusion
In this paper we present Retracer, a novel method for cell trace
transduction that employs high-fidelity network simulation and
trace replay to produce traces in a target network position given
traces from other positions. Retracer is important in the study of
real-world WF because it enables researchers to utilize real labeled
exit-side traces containing the natural behavior of real Tor users
(such as those in GTT23 [23]) while at the same time accurately rep-
resenting the WF threat model in which testing occurs on entry-side
traces. Through extensive evaluation, we show that a real-world ad-
versary training on exit traces could incur significant performance
penalties that could be almost completely mitigated by applying
Retracer to those traces prior to training. Our study makes other
novel contributions to the study of WF, including the first analysis
of feature importance considering real-world traces which is made
possible by our study of individual website fingerprintability across
thousands of trained website classifiers. We also provide novel in-
sights concerning previous WF methods by revisiting them within
a more realistic threat model. Based on our results, we believe that
training and testing directly on traces from GTT23 is a reasonable
approximation of an adversary that applies Retracer to exit traces
prior to entry deployment (see Appendix H for a comparison).
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Appendix
A NetAugment Details
In this section we provide an extended description of NetAugment.
Note that we provided an overview in §2.4 while Bahramali et al.
describe these operations in more detail [2, Alg. 1–4].

NetAugment operates on cell bursts, which are subsequences of
cell traces such that all cells in a subsequence have the same direc-
tion and the cell before and after the burst are opposite-direction
cells. More formally, a subsequence 𝐶 [𝑖: 𝑗] of cell trace 𝐶 is con-
sidered a burst if (𝑑𝑖 = 𝑑𝑘 ) 𝑗𝑘=𝑖 , 𝑑𝑖−1 = 𝑑 𝑗+1, and 𝑑𝑖−1 ≠ 𝑑𝑖 . Ne-
tAugment randomly applies one of three burst manipulations to a
trace: (1) modify incoming bursts, where burst sizes are randomly
increased for short cell traces and randomly decreased for long
cell traces; (2) insert outgoing bursts, where incoming bursts are
randomly split and outgoing bursts are inserted; and (3) merge in-
coming bursts, where outgoing bursts are randomly dropped and
incoming bursts are merged. Finally, a shift operation is applied by
dropping the last 𝑛 cells and prepending 𝑛 0-sized cells.

B Network Simulation Details
In §4 and §5, Retracer replays traces from GTT23 inside of Shadow
simulations of the Tor network. We run our simulation of Tor in
Shadow using a blade server cluster in which each blade contains
identical hardware: 1 TiB of RAM and 2×18 core Intel Xeon Gold
6354 CPUs (36 total cores and 72 total hyperthreads). Each blade is
configured to run a minimal version of Debian 11 with Linux kernel
v5.10.0, and the simulations are run in containers using Singu-
larity [27]. We use Tor v0.4.7.10, Shadow at commit e502d20ed,
tgen at commit 15d1eab3c, oniontrace at commit 3696db432, and
tornettools at commit 9716a8682.

In our experiments, we model Tor networks that represent 15% of
the size and scale of the live Tor network using Tor metrics modeling
data from the period 2023-01-01 to 2023-03-31. Our baseline Tor
network model uses 946 Tor nodes and 1,129 traffic generation
processes to create 447,084 circuits every 10 minutes and emulate
the simultaneous traffic load of 112,851 users.

B.1 Simulated Network Performance
An important value in setting up the Shadow models is the load_scale
value ℓ , which dictates how much background traffic is added into
the simulated Tor network by the tgen traffic generation tools. To
produce background traffic, tgen currently uses Markov models
with parameters that were last updated in 2018 [21]. At that time,
ℓ=1.0 was the default setting that produced the load that most
closely matched the live Tor network in 2018. Since then, recent
work has discovered that ℓ=2.0 produced load that more closely
represents more recent Tor networks [22]. Thus, we use ℓ=2.0 in
our baseline Tor network model, and larger values to represent
more highly loaded networks. Recall that from this baseline, the
Retracer method adjusts ℓ to different settings in order to replay
traces across a more diverse set of network conditions. Changing ℓ
causes the modeling tools to adjust the Markov model parameters
to increase or decrease the number of background traffic circuits
that are created during the simulation, which affects the congestion
levels of the Tor relays.
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Figure 10: Cumulative distributions for six metrics com-
monly used to gauge Tor network performance. We compare
metrics measured in the live Tor network during our model-
ing period with those measured in our Shadow simulations
across the minimum, baseline, and maximum load values
that we condsidered in our Retracer experiments (i.e., ℓ=1.38,
ℓ=2.0, and ℓ=2.9, respectively).

We plot in Fig. 10 six metrics commonly used to gauge Tor net-
work performance. We show the performance that was measured
on the live Tor network during our modeling period [47], and com-
pare it to the performance in the Shadow-simulated Tor networks
for different values of ℓ . In particular, we show performance for
the smallest, baseline, and greatest values of ℓ that we considered
in §4 and §5, that is, respectively ℓ=1.38, ℓ=2.0, and ℓ=2.9. We ob-
serve that the performance in the Shadow simulations generally
approximate the live Tor performance, and indeed the network
becomes more congested for higher load values as indicated by
higher round-trip and download times and lower circuit goodput.
Thus, we confirm that our models produce a varied set of network
conditions as intended, across which Retracer will replay traces.

B.2 Trace Replay Cost
Recall that the Retracer methodology replays GTT23 traces inside
of Tor network simulations. The Retracer variant adds additional
processes into the simulation: a replay server on each exit relay
virtual host and 10 replay clients on new virtual hosts. In our Re-
tracer experiments, we configure each replay client to replay 1,000
traces in parallel, and we replay a total of 115,000 traces across the
10 replay clients in each simulation.

We analyze the resource cost of the Retracer strategy by measur-
ing the time and memory required to run the baseline simulation
(with ℓ=2.0) with and without Retracer. The resources required to
run the baseline simulations, and the added costs for replaying the
traces with Retracer, are shown in Fig. 11. We observe an insignifi-
cant increase is memory (RAM) usage to run the replay processes
(right subplot). However, we observe a larger increase in runtime
(left subplot). Starting at 600 seconds into the simulation, the Re-
tracer clients start running and replaying 1,000 traces in parallel,
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Figure 11: The resource costs required to run a single Shadow
simulation of a 15% Tor network with and without Retracer
replaying 115,000 traces in parallel during the simulation.

and each trace requires a new circuit to be built. Following the
600 second simulation time, ongoing circuit builds and data trans-
fers for each trace further contributes to the increased runtime. In
total, the baseline simulation without Retracer completes in 15.3
hours while the Retracer variant completes in 29.9 hours. Thus, we
compute that on average each trace that is replayed adds about 2.2
seconds to the overall runtime of the simulation (7,871 traces can
be replayed per added hour of runtime).

Note that we did not attempt to reduce the costs of replaying
traces since optimizing the resource costs was not part of our re-
search. However, there are some techniques that could limit the
costs. For example, we run our experiments in simulated Tor net-
works that represent the live Tor network at a scale of 15%, but
running them in smaller networks would significantly reduce the
required resources. Additionally, the Shadow models include back-
ground traffic generators by default, but it is possible that those
generators could be removed since the trace replay nodes may al-
ready produce adequate traffic. Future work could consider how
these strategies impact the extracted entry traces and the perfor-
mance of classifiers trained on them.

C Ethical Considerations
The measurements described in § 4.2 were conducted using the
live Tor network. We build approximately 80,000 circuits through
Tor using a client under our control, and fetch a single webpage
through each circuit. Although we only add a modest load to the
network relative to the billions of circuits Tor is estimated to handle
daily [31] and its total throughput of 300 Gbit/s [47], we spread
our measurement over several days to limit our impact on the
network and its users. Our own relay serves as one of three relays
in every circuit we build; while measuring our circuits, our relay also
contributes bandwidth to support general Tor usage. Finally, a goal
of this work is to reduce the future necessity of such measurements.

D Description of Synthetic Datasets
Our evaluation in §5.4 considers two synthetic datasets: the Good-
Enough dataset from Pulls [38], and the BigEnough dataset from
Mathews et al. [32]. GoodEnough and BigEnough both include
traces from different webpages per website to help improve dataset
diversity. Additionally, both datasets include traces for monitored

websites that the adversary considers sensitive, and traces for un-
monitored background websites for open-world analysis. These
features make them good candidates for comparison under a WF
classification task to classifiers trained using Retracer traces whose
patterns originate from GTT23.

D.1 GoodEnough
The GoodEnough dataset was collected from December 2019 to
February 2020. During each of the three collection months, a dataset
of 20,000 traces was collected. Half of those traces were collected
from 50 websites selected from among the Alexa top-300. For each
selected website, 10 of its webpages were selected and 20 traces
collected per webpage, for a total of 50 × 10 × 20 = 10, 000 traces.
The other half of the traces consists of a single trace from each of
10,000 webpages collected from the top URLs of reddit.com/r/all.
These traces were collected to form the negative class during open-
world analysis. All traces were collected using scripted Tor Browser
instances configured not to use entry guards. Data was collected
for each of the three different Tor Browser safety settings: Standard,
Safer, and Safest. In our evaluation, we only use the Standard data,
which is the default Tor Browser setting.

We removed 1,909 short traces from GoodEnough. Because Good-
Enough contains traces collected in consecutive months, we parti-
tion the remaining traces into a training set of traces that temporally
precedes a testing set of traces following best practices [37]. Con-
sequently, we name the collection of traces from January 2020 as
GoodEnough(Jan) and the collection of traces from February 2020
as GoodEnough(Feb). Note that GoodEnough label hashes were
produced consistently with GTT23.

D.2 BigEnough
The BigEnough dataset was collected from November 2021 to Jan-
uary 2022. It is similar to GoodEnough and is collected using the
same tools, but it includes more and different websites. Unlike
GoodEnough, BigEnough provides a single crawl spanning its col-
lection period and does not provide full crawls in different months.
We obtained 161,254 total traces from the BigEnough authors. The
monitored set was composed of 74,511 traces from the 121 most-
popular websites as ranked by the Open PageRank Initiative. From
each of those sites, 17 webpages were selected and visited 36 times
on average. The unmonitored set was composed of the remaining
86,743 traces of front pages sampled from the remaining top web-
sites in the ranking. We use the data from the default Standard Tor
Browser safety level, but data from other levels was also collected.

We removed 56,686 short traces from BigEnough. Because BigE-
nough traces are not temporally separated, we partition the re-
maining traces into a training set BigEnough(60) and a testing
set BigEnough(40) by page using random assignment such that
60% of the pages appear in BigEnough(60) and 40% appear in
BigEnough(40). Thus, BigEnough(60) does not contain every page
of every BigEnough website: a page might be a part of either
BigEnough(60) or BigEnough(40) but not both, which ensures that
unobserved pages will be encountered during testing as would oc-
cur in practice. Note that BigEnough label hashes were produced
consistently with GTT23.
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E Feature Importance
Table 5 shows an extended view of the results that we presented
in Table 4 in §5.2. For the full meta-analysis, we used the following
collection of trace-level features:

Trace Length The total number of cells in the trace.
Count Incoming (Interval) The total number of server-to-client cells

in the specified cell interval. We used the intervals [0,𝑚) for
𝑚 ∈ {10, 30, 50, 100}.

Count Incoming (All) The number of server-to-client cells.
Count Outgoing (All) The number of client-to-server cells.
Length of Longest Burst The number of cells in the longest burst.
Number of Bursts The total number of bursts in the trace.
CUMUL 𝑥 The cumulative sum of cell direction values after the

circuit is 𝑥% complete [35].

These trace features were aggregated on a domain-wise basis us-
ing 5 different summary statistics: (1) average, (2) minimum, (3)
maximum, (4) standard deviation, and (5) median.

F Online WF Estimation Error
This section provides extended details and analysis from §5.3. In the
OnlineWF method of Cherubin et al., the adversary continuously
trains WF classifiers on real-world exit traces in real time [8], and
in the WF threat model those classifiers should be tested on entry
traces. However, the authors did not have access to real-world
entry traces with which to test the classifiers they trained on exit
traces. Thus, they were only able to estimate the performance of
their own OnlineWF method by both training and testing on real-
world exit traces, which is an inaccurate representation of the WF
threat model. To understand the error in their estimation, they
conducted a simplified evaluation using synthetic traces and found
that incorrectly testing on exit rather than entry traces resulted in
an overestimation of classifier accuracy of 5–18% [8, § 6.4].

Using GTT23, we reevaluate the accuracy of their method of
testing on exit traces to estimate OnlineWF performance. We com-
pare the performance of classifiers both trained and tested on exit
traces to those trained on exit traces but tested on entry traces. We
define the experiment Estimate(𝑊Train,𝑊Test) as follows:
(1) Ω ← labels from Test (GTT23(𝑊Train)) with ≥ 100 traces
(2) ∀𝜔 ∈ Ω: train a model on Train(GTT23(𝑊Train), 𝜔)
(3) Test each trained model on Test (GTT23(𝑊Test))
We define an experiment Actual(𝑊Train,𝑊Test) as follows:
(1) Train as in Steps 1 and 2 of Estimate(𝑊Train,𝑊Test)
(2) Test each trained model on Test (Retracer(𝑊Test, 1))
We use Estimate({1}, {2, 3, 4}) and Estimate({7}, {8, 9, 10}) to eval-
uate the performance estimated by Cherubin et al., and we use
Actual({1}, {2, 3, 4}) and Actual({7}, {8, 9, 10}) to evaluate the On-
lineWF performance we expect can be achieved in the real world.
Across the 4 experiments, we trained and tested a total of 1,674 DF
classifiers using a total of more than 1,033,020 unique traces.

Fig. 12 compares classifier performance across the 652 websites
for which we have statistically rigorous estimates (i.e., at least 30
testing examples); larger values (→ on the x-axis) indicate better
performance. We plot the distribution over the absolute 𝐹1 scores
of the classifiers in the left subplot. We observe that the OnlineWF
estimate in which the exit-trained classifiers are unrealistically

Table 5: Expanded set of important per-website trace features.

Rank Feature Importance 𝝆

Re
ca

ll

1 Num traces .26 .49
2 Avg of Count Incoming [0, 10) .21 .50
3 Stddev of Count Incoming [0, 100) .14 −.44
4 Stddev of Count Incoming [0, 10) .03 −.51
5 Stddev of Count Incoming [0, 30) .03 −.51
6 Stddev of CUMUL 10 .02 −.28
7 Median of Count Incoming [0, 10) .02 .41
8 Stddev of Count Incoming (All) .02 −.39
9 Stddev of Length of Longest Burst .02 −.27
10 Median of Length of Longest Burst .02 .01
11 Stddev of Count Incoming [0, 50) .01 −.48
12 Max of CUMUL 10 .01 −.07
13 Stddev of Trace Length .01 −.34
14 Min of Count Outgoing (All) .01 .03
15 Avg of Length of Longest Burst .01 .05
16 Stddev of Number of Bursts .01 −.20
17 Stddev of CUMUL 20 .01 −.31
18 Median of Number of Bursts .01 −.03
19 Avg of Number of Bursts .01 −.07
20 Avg of Count Incoming [0, 30) .01 .33

Pr
ec

isi
on

1 Stddev of Count Incoming [0, 10) .27 −.50
2 Avg of Count Incoming [0, 10) .10 .51
3 Stddev of CUMUL 10 .04 −.22
4 Max of Count Incoming [0, 100) .04 −.18
5 Median of Length of Longest Burst .02 .06
6 Num traces .02 .12
7 Stddev of Length of Longest Burst .02 −.14
8 Median of Count Incoming [0, 10) .02 .47
9 Max of CUMUL 10 .02 −.03
10 Stddev of Count Incoming [0, 30) .02 −.40
11 Avg of Length of Longest Burst .02 .05
12 Min of Number of Bursts .01 .08
13 Stddev of CUMUL 20 .01 −.23
14 Stddev of Trace Length .01 −.25
15 Stddev of Count Incoming [0, 100) .01 −.30
16 Min of Count Outgoing (All) .01 .00
17 Stddev of Count Incoming [0, 50) .01 −.32
18 Max of Count Outgoing (All) .01 −.05
19 Max of CUMUL 80 .01 .03
20 Max of Length of Longest Burst .01 −.08

𝐹
1

1 Stddev of Count Incoming [0, 10) .28 −.54
2 Avg of Count Incoming [0, 10) .11 .54
3 Num traces .05 .22
4 Stddev of CUMUL 10 .05 −.25
5 Median of Count Incoming [0, 10) .04 .49
6 Stddev of Count Incoming [0, 50) .02 −.38
7 Stddev of Count Incoming [0, 30) .02 −.45
8 Stddev of Length of Longest Burst .02 −.18
9 Stddev of Count Incoming [0, 100) .02 −.35
10 Min of Number of Bursts .01 .06
11 Stddev of Trace Length .01 −.29
12 Max of Count Incoming [0, 100) .01 −.18
13 Max of CUMUL 10 .01 −.02
14 Median of Length of Longest Burst .01 .06
15 Avg of Length of Longest Burst .01 .06
16 Stddev of CUMUL 60 .01 −.28
17 Median of Number of Bursts .01 .04
18 Min of Count Outgoing (All) .01 .00
19 Stddev of CUMUL 20 .01 −.26
20 Stddev of CUMUL 50 .01 −.28
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Figure 12: OnlineWF performance when testing on exit traces
as in the estimation of Cherubin et al. [8], compared to actual
performance when tested on Retracer entry traces. Using exit
traces to estimate the test set leads to overestimation.

tested on exit traces generally tends to overestimate performance.
The estimated 𝐹1 scores are greater than the actual scores by 0.14
(0.02→0.16), 0.29 (0.1→0.39), and 0.34 (0.32→0.66) in the Q1, me-
dian, and Q3, respectively. The right subplot shows the extent of
the overestimation relative to the actual scores on a per-website
basis. We observe that performance is overestimated for 90% of
the websites we tested: 0.17 in the median and ranging from near
zero to a worst case of 0.93. This range of overestimation is much
greater than the previously estimated 5–18% [8, § 6.4].

G WF Evaluation on Synthesized Data
This section provides extended details and analysis of the evaluation
of the benefit of synthetic data that we summarized in §5.4.2.

We have found in §5.4 that WF is more challenging when faced
with real-world data than with synthetic data. We now seek to un-
derstand the effectiveness of a training strategy in which the adver-
sary supplements real-world traces with additional synthetic traces.
The real-world traces are useful in teaching the classifier how to
distinguish both positive and negative classes that it will encounter
at test time, while synthetic traces may reinforce the classifier’s
concept of the monitored set. We define a Combine(𝐷Train, 𝐷Test)
experiment as follows:
(1) 𝛼 ← labels from Test (𝐷Train) with ≥ 100 traces
(2) 𝛽 ← labels from Test (BigEnough(60)) with ≥ 100 traces
(3) ∀𝜔 ∈ 𝛼 ∩ 𝛽 : train a model on traces from the concatenated

Train(𝐷Train, 𝜔) ∥ Train(BigEnough(60), 𝜔)
(4) Test each trained model on traces from Test (𝐷Test)
We evaluate the overall effect of synthesized datasets by running
a Combine(Retracer({1}, 4), Retracer({2, 3, 4}, 1)) experiment and
a Combine(Retracer({7}, 4), Retracer({8, 9, 10}, 1)) experiment, re-
sulting in the training of 49 new DF classifiers. We compare the
performance of the classifiers from the Combine(·) experiments
with that of the BigEnough and Retracer classifiers with labels in
𝛼 ∩ 𝛽 that were trained and tested as described in §5.

Fig. 13 shows the distribution of 𝐹1 scores over the 47/49 common
websites for which we observed at least 30 traces in the test set. In
the left plot, we observe a comparable performance distribution for
both the Retracer and Combined classifiers, while performance for
classifiers trained on the synthetic BigEnough dataset is poor with a
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Figure 13: Distribution of the 𝐹1 score over the classifiers that
are trained on common labels with Retracer, BigEnough, and
combined datasets and tested on Retracer entry traces.
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Figure 14: Training and testing directly on exit traces from
GTT23 is a reasonable approximation of the more realistic
Retracer method of training and testing on entry traces.

maximum 𝐹1 score of just 0.10. These results are consistent with pre-
vious work [8, Fig. 4]. We further extend the analysis to consider the
absolute difference in performance on a per-website basis, a new per-
spective. The right plot in Fig. 13 shows that the classifiers trained
on the combined dataset performed just slightly better than the Re-
tracer dataset alone for about half of the websites, where in the best
case the 𝐹1 score increases by 0.17 and in the worst case it decreases
by 0.12. Future work should consider expanding this analysis in
order to consider the effects of more recent synthetic datasets.

H WF with Retracer vs. GTT23
Here we seek to understand classier performance when both train-
ing and testing directly on exit traces from GTT23. If training and
testing directly on exit traces from GTT23 yields similar perfor-
mance to training and testing on entry traces from Retracer, then
using GTT23 directly in lieu of Retracer may be a reasonable ap-
proximation that could prevent future researchers from incurring
the added costs associated with Retracer. Thus, we simply compare
the results from training and testing on exit traces from GTT23 (i.e.,
the two Estimate(·) experiments from Appendix G) with results
from training and testing on Retracer entry traces (i.e., the two
Experiment(·) experiments from § 5.2 with 𝑀=4). This compari-
son is shown in Fig. 14 and demonstrates that researchers who
use GTT23 alone may already be able to closely approximate the
Retracer method that a real-world adversary could use.
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