
This paper is included in the Proceedings of the
2022 USENIX Annual Technical Conference.

July 11–13, 2022 • Carlsbad, CA, USA
978-1-939133-29-8

Open access to the Proceedings of the
2022 USENIX Annual Technical Conference

is sponsored by

Co-opting Linux Processes for High-Performance
Network Simulation

Rob Jansen, U.S. Naval Research Laboratory; Jim Newsome, Tor Project;
Ryan Wails, Georgetown University, U.S. Naval Research Laboratory

https://www.usenix.org/conference/atc22/presentation/jansen

Co-opting Linux Processes for High-Performance Network Simulation

Rob Jansen
U.S. Naval Research Laboratory

rob.g.jansen@nrl.navy.mil

Jim Newsome
Tor Project

jnewsome@torproject.org

Ryan Wails
Georgetown University,

U.S. Naval Research Laboratory
ryan.wails@nrl.navy.mil

Abstract

Network experimentation tools are vitally important to the
process of developing, evaluating, and testing distributed sys-
tems. The state-of-the-art simulation tools are either pro-
hibitively inefficient at large scales or are limited by nontrivial
architectural challenges, inhibiting their widespread adoption.
In this paper, we present the design and implementation of
Phantom,1 a novel tool for conducting distributed system ex-
periments. In Phantom, a discrete-event network simulator
directly executes unmodified applications as Linux processes
and innovatively synthesizes efficient process control, sys-
tem call interposition, and data transfer methods to co-opt the
processes into the simulation environment. Our evaluation
demonstrates that Phantom is up to 2.2× faster than Shadow,
up to 3.4× faster than NS-3, and up to 43× faster than gRaIL
in large P2P benchmarks while offering performance compa-
rable to Shadow in large Tor network simulations.

1 Introduction

Network experimentation tools promote the progression of
network science: they aim to realistically reproduce the ef-
fects of distributed networks at scale in a controlled environ-
ment, enabling the scientific evaluation of performance and
security across a range of system characteristics. Experimen-
tation tools are particularly useful for large-scale distributed
systems that are deployed in the real world, such as the glob-
ally expansive domain name system [50], peer-to-peer and
content distribution networks [14], decentralized data-storage
networks [52], and overlay networks [17]. Due to the sizes
of these deployments and the internet’s great heterogeneity
and rapid change [19], it would be extremely difficult to run
scientifically controlled, replicable experiments with them
in the real world. Tools that enable realistic, scalable, and
controlled experimentation of large-scale distributed systems
can help accelerate research, development, and education.

Approved for public release: distribution is unlimited.

Large-scale distributed systems are often characterized
by a complex set of algorithms and protocols that run in
application-layer software. Previous work has found that it is
prudent to directly execute this software as part of the experi-
mentation process to promote realism [30, 54, 62]. However,
there are nontrivial architectural challenges in designing tools
that meet the scalability and realism requirements. Emulators
such as Mininet [45] do not support large-scale systems be-
cause they are vulnerable to time distortion during periods
of overload [44]. Simulators such as NS-3 [26] run applica-
tion abstractions in place of real software which can cause
unrealistic behavior and lead to invalid results [54].

To meet the large-scale distributed system requirements, the
state-of-the-art tools are designed with hybrid architectures
wherein a network simulator directly executes application
code. However, tools that load and execute applications in
plugin namespaces (i.e., NS-3-DCE [62] and Shadow [30])
suffer from compatibility and correctness issues and high
maintenance costs: applications must be recompiled as plug-
ins, complex code is required to load and run them, and the
system calls they make often leak outside of the simulation.
On the other hand, tools that run applications as Linux pro-
cesses (i.e., gRaIL [54]) incur considerable inter-process over-
head: we have measured at least a 10× performance penalty
in running gRaIL due to inefficient process control, system
call interposition, and data transfer mechanisms. No existing
network simulator simultaneously overcomes the compati-
bility, correctness, maintenance, and performance challenges
found in the state-of-the-art tools.
Introducing Phantom: We present Phantom,1 a novel, multi-
process network simulator that: (i) precludes the compatibil-
ity, correctness, and maintenance issues that have plagued
plugin-based designs; and (ii) overcomes the performance
challenges of existing multi-process designs by innovatively
synthesizing efficient process control, system call interposi-
tion, and data transfer mechanisms. In Phantom, a discrete-
event network simulation core directly executes unmodified

1We use Phantom as a codename in this paper, but our design is merged
into the open-source Shadow simulator and synonymous with Shadow v2 [4].

USENIX Association 2022 USENIX Annual Technical Conference 327

applications as Linux processes, allowing us to take advantage
of native Linux process isolation and management. Phantom
co-opts the Linux processes into a simulation environment
by (i) preloading a shim library (via LD_PRELOAD) that is
used to establish efficient mechanisms for process control and
function interception; (ii) installing a secure computing (i.e.,
seccomp) filter in the processes to guarantee interposition on
system calls that are not preloadable; and (iii) using a novel
inter-process memory mapper that allows us to directly read
and write process memory without incurring inter-process
communication (IPC) overhead. Once the processes are co-
opted, Phantom efficiently emulates system calls they make
and facilitates communication over a simulated network.
Novel Contributions: This paper makes the following novel
contributions to the state of the art in network simulation:
– The innovative design of Phantom, which for the first time

shows how to minimize inter-process overhead in a hybrid,
multi-process network simulator.

– A high-performance implementation of Phantom.
– An extensive evaluation of Phantom through which we

find that it is up to 2.2× faster than Shadow, up to 3.4×
faster than NS-3, and up to 43× faster than gRaIL in large
P2P benchmarks while offering performance comparable
to Shadow in large Tor network simulations.

– A verification of Phantom’s accuracy in small LAN and
WAN networks and in large Tor overlay networks.

Impact: This work has high potential for broad impact across
multiple communities for the purposes of research, devel-
opment, and education. First, researchers building software
prototypes can use Phantom to quickly evaluate their new dis-
tributed system designs in a large-scale network without need-
ing to worry about complicated deployments that are difficult
to manage. Second, Phantom can be built into developers’ test-
ing frameworks so that new code can be continuously tested
and discovered bugs can be identically reproduced. Third,
with facilities to introduce network events (e.g., intermittent
delays or failures), Phantom could help teach network and dis-
tributed systems courses. The Tor Project has already started
using Phantom to develop and test new congestion control
protocols before deploying them to the Tor network [57].
Availability: Phantom is merged into the open-source Shadow
project as of v2 [4] and our artifacts are publicly available [3].

2 Background and Motivation

We motivate the need for Phantom by identifying the key
requirements, existing architectures, and challenges for re-
alistically simulating large-scale distributed systems. (See
Appendix A for extended background on related tools.)

2.1 Requirements
Scalability: Recent work finds that it is imperative to run
network experiments as close as possible to the deployed
scale because reducing the scale can lead to a significant loss

of confidence in the experimental results [40]. Although some
statistical confidence can be recovered with repeated trials,
it can take many more trials at a smaller scale to achieve the
same confidence as larger scale simulations [40].

To increase the scale at which we can run network ex-
periments, a correct and valid execution of the simulation
workload should not depend on the computational abilities
of, or passage of time on, the host machine. Decoupling the
simulation from time and computational constraints allows
us to scale without introducing artifacts in the results due to
over-provisioning and time-distortion [44].
Realism: Distributed systems are often composed of a diverse
set of applications that each contain complex logic. We should
directly execute these applications in order to guarantee that
our experiments identically replicate their logic and obtain
the highest application fidelity possible [30, 54, 62].

Deployed system software is often under active develop-
ment to fix bugs and develop enhancements. We should ex-
ecute applications the same way they would be executed in
deployment; we should not require recompilation or the main-
tenance of application patches or abstractions. Running un-
modified applications enables us to decouple the application
logic and programming language from that of the simulation.
Control: Large-scale distributed systems contain many vari-
ables, and changing any one of them can have cascading net-
work effects that can lead to unexpected behaviors or results.
We should support deterministic execution to obtain scien-
tific control and to guarantee that the results produced by an
experiment can be independently and identically replicated.

2.2 Traditional Architectures
Tools implementing strictly traditional architectures are

unsuitable for evaluating large-scale distributed systems with
logic primarily contained in application-layer software.
Simulation: Network simulators such as NS-3 [26] scale inde-
pendently of the wall-clock time [67] and offer precise exper-
imental control due to deterministic execution [13]. However,
simulators traditionally run application abstractions in place
of real software which can cause unrealistic behavior and lead
to invalid results [54]. As a result, traditional simulators do
not fulfill the application realism requirement.
Emulation: Network emulators such as Mininet [45] directly
execute applications using real kernel network stacks and
therefore offer better application realism. However, emulators
lack perfect scientific control due to non-determinism [12].
Moreover, emulators are generally unable to scale indepen-
dently of computational constraints: if the experiment host
machine is overloaded, time distortion will exacerbate repro-
ducibility issues [44]. We confirm this claim with an experi-
ment in which we find that as the host machine becomes more
loaded with virtual peers, its packet forwarding capacity is
limited and a decreasing fraction of the sent packets are cor-
rectly forwarded (see §5.4 and Figure 14 for details). As a
result, traditional emulators are useful only at small scales.

328 2022 USENIX Annual Technical Conference USENIX Association

Table 1: Properties of Network Experimentation Architectures

Architecture Example Tool Scalability? Realism† Control‡

Emulation Mininet [45]
Simulation NS-3 [26]

Hybrid This Work
? Experiments scale independent of time or computational constraints.
† Unmodified applications can be directly executed without recompilation.
‡ Results can be deterministically replicated with the same RNG seed.

2.3 Hybrid Architectures and Challenges
A hybrid architecture is characterized by the ability to

directly execute applications to promote realism while still
running them in the context of a cohesive network simulation.
As a result, a hybrid architecture enjoys the advantages of
both emulation and simulation and offers the best opportunity
to fulfill the scalability, realism, and control requirements
discussed in §2.1 (see Table 1). However, there are numerous
challenges with hybrid architectures that we believe have
inhibited tools implementing them from achieving widespread
adoption. We describe these challenges by the method for
executing applications: plugin namespaces and processes.
Plugin Namespaces: In this approach, the simulator loads
each application into a new plugin namespace (e.g., using
dlmopen) and directly executes the application in the con-
text of that namespace while using function interposition (via
LD_PRELOAD) to hook the loaded applications into the simu-
lation environment. A plugin design is implemented in both
NS-3-DCE [62] and Shadow [30] and has several limitations:
– Compatibility: The domain of supported applications is lim-

ited to those that are compiled as position-independent li-
braries (PIC) or executables (PIE) that export their symbols
to the dynamic symbol table (rdynamic), are dynamically
linked to libc, and make all system calls through libc.
Rebuilding is tedious and impossible if the source code is
not available (e.g., closed-source software or malware).

– Correctness: Relying solely on preloading is unreliable
because only dynamically linked functions (e.g., those in
libc) can be intercepted using LD_PRELOAD; system calls
invoked via statically linked code or assembly instructions
will leak outside of the simulation and cause errors.

– Maintainability: A custom dynamic loader [63] is required
to load more than 16 namespaces at once, and a portable
threading library [48] is used to support multi-threaded ap-
plications (these account for 62k LoC in Shadow; see §4).
libc functions with nontrivial functionality must be reim-
plemented in order to intercept the system calls they make.

These challenges have limited Shadow’s use to Tor network
simulation [40] while work on simulating Bitcoin has been
abandoned [48] and work on NS-3-DCE has mostly stalled.
Processes: In this approach, applications are executed as stan-
dard Linux processes and hooked into the simulation through
the system call interface using standard kernel facilities. This
design overcomes many of the limitations of the plugin ap-

proach: (i) the simulator can execute any existing applica-
tion without rebuilding it; (ii) kernel subsystems guarantee
reliable process isolation and correct system call intercep-
tion; and (iii) the maintenance of a custom loader, threading
libraries, and reimplemented libc functions is no longer re-
quired. However, the naïve way of connecting multiple pro-
cesses in a cohesive simulation as demonstrated in gRaIL [54]
requires the kernel’s process control (ptrace) subsystem and
is significantly less performant than the plugin approach: we
show in §5.4 that the run time of gRaIL (which extends NS-
3) is 13× that of NS-3 alone, and 43× that of Phantom in
experiments with fixed P2P messaging workloads. Worse per-
formance in gRaIL’s multi-process design can be attributed to:
– Process control: The simulator needs to control the ex-

ecution state of the processes as they progress through
simulated time. The ptrace process control mechanism
(PTRACE_ATTACH or PTRACE_TRACEME) incurs overhead
that is quadratic in the total number of attached processes,
limiting scalability (see Appendix B.1).

– System call interposition: The simulator needs to intercept
system calls made in the processes so they can be emulated.
The ptrace system call mechanism (PTRACE_SYSCALL)
requires at least 4 context switches for every system call,
contributing substantial overhead relative to a same-process
function call (see Appendix B.2).

– Data transfer: The simulator needs to access system call
arguments referencing process memory (e.g., data buffers).
The ptrace memory access mechanism (PTRACE_PEEK
and PTRACE_POKE) requires an additional system call and
mode transition for each word of memory, making it ineffi-
cient for large structs and buffers (see Appendix B.3).

Ideally, we want a simulator with the higher performance of
the uni-process, plugin-based Shadow design (which does not
incur inter-process overhead) and the improved compatibility,
correctness, and maintainability of the multi-process gRaIL
design. However, it was previously unknown if this ideal is at-
tainable due to the multi-process challenges; indeed, we show
throughout §5 that even a more efficient use of ptrace (see
Appendix B) is still less performant than a uni-process design.

3 Design

In this section we describe the novel multi-process Phantom
design that eliminates the limitations of the state-of-the-art
plugin-based architecture and overcomes the performance
challenges of the state-of-the-art process-based simulator.

3.1 Overview
The main component in Phantom is a discrete-event sim-

ulator which drives the simulation (see Figure 1). After ini-
tialization, the simulator directly executes the real applica-
tions of an experiment as Linux processes while using inter-
process communication channels (IPC) between the applica-
tion and simulator processes. Phantom co-opts the applica-

USENIX Association 2022 USENIX Annual Technical Conference 329

Figure 1: Overview of the Phantom design. Phantom directly exe-
cutes application processes, intercepting system calls and handling
them using a shim and an inter-process communication channel.

tion processes into the simulation by intercepting all system
calls they make (e.g., socket, listen, connect, send, recv,
poll, etc.) rather than allowing them to be handled by the
Linux kernel. Phantom handles intercepted system calls by
internally simulating common kernel functionalities that most
applications expect to be available, such as networking facili-
ties (e.g., buffers, protocols, and interfaces), event notification
facilities (e.g., select, poll, and epoll), and file descriptor fa-
cilities (e.g., files, sockets, and pipes). As a result, Phantom
emulates a Linux kernel to the applications while connecting
them through a virtual, simulated network, and the applica-
tions need not be aware that they are running in a simulation.

3.2 Components

3.2.1 Simulation Controller Process

Phantom is a parallel, conservative-time, discrete-event
network simulator that emulates a Linux kernel to the applica-
tions it executes. Simulations are driven by a single controller
process which has two primary functions that occur succes-
sively during an initialization phase and an execution phase.
Initialization Phase: During initialization, the controller
reads and processes configuration inputs. The inputs specify
a number of virtual hosts that should be simulated, a network
graph model that should be used to model network charac-
teristics such as routing, latency, and packet loss between
the virtual hosts, and the file paths and arguments needed
to directly execute the applications on the virtual hosts. The
controller initializes internal simulation state accordingly.
Execution Phase: Simulation work is organized into events
that each occur at a discrete simulation time. Each event is
assigned to a virtual host and stored in a host-specific event
queue: a min-heap that sorts events by their simulation time.

The controller manages the global simulation clock and
synchronizes simulation time by using time barriers to estab-
lish discrete execution rounds: time intervals during which
events may be safely executed in parallel. The time barrier
in a round is set such that no event that is executed for any
host in that round will enqueue a new event for any other host
in the same round. This conservative-time algorithm guaran-
tees that simulation time always advances on each host, even
when concurrently executing distinct hosts’ events. When the
next event time in every host’s event queue exceeds the time
barrier for the current round, the controller updates the global
clock and advances the execution round.

3.2.2 Parallel Worker Threads

Phantom concurrently executes the events in each execu-
tion round using worker threads (workers) that are managed
with high level abstractions we call logical processors (LPs).
Phantom allows a configurable number of LPs and controls
the state of an independently configurable number of workers
such that only a number of workers equal to the number of
LPs are concurrently active.2

The following algorithm employs a work stealing [10, 65]
strategy to schedule the worker threads, ensuring that each LP
will always be running a worker thread as long as one with
remaining work exists. When an execution round begins, one
worker thread starts running for each LP while the remaining
workers remain waiting. While running, a worker dequeues
and executes all events that occur within the current round
(as set by the controller) for all hosts assigned to it. When a
worker completes all outstanding events for the current round,
it: (i) starts running another waiting worker that has yet to run
in this round (if any exist); and (ii) starts waiting to be run
again during the following round. An execution round ends
when all workers have entered the waiting state.

3.2.3 Direct Application Execution

During initialization, each virtual host is configured to di-
rectly execute some number of applications. Phantom inter-
nally creates virtual process and thread data structures to store
the state needed to manage the execution of the applications
(e.g., file descriptor tables and standard input/output handles).
Managed Processes and Threads: Phantom directly exe-
cutes specified application binaries and allows for configura-
tion of the command-line arguments and the start time within
the simulation. Each application is launched by a Phantom
worker with a vfork+execvpe sequence.

The application execution procedure results in the creation
of one or more Linux processes and threads that are managed
by their parent Phantom worker. Each worker (i) uses our
preload shim library to co-opt their managed processes into
the simulation, and (ii) uses our inter-process communication
mechanisms to modulate the running state of the managed
processes such that only one of a worker and its managed
processes are running at any time (thus maintaining that only
one task per LP is concurrently active).
Preload Shim: In order to assist with controlling the man-
aged processes and threads, we create a custom shared library,
subsequently referred to as “the shim”, which is loaded into
each managed process’s address space using the LD_PRELOAD
environment variable. We use the shim to: (i) execute initial-
ization code in the shim’s constructor functions and establish
an inter-process communication channel (see §3.2.6); and
(ii) intercept functions defined in libraries that are dynami-
cally linked to the applications (e.g., libc; see §3.2.4).

2Limiting the number of LPs to be at most the number of available CPU
cores avoids performance degradation caused by CPU oversubscription.

330 2022 USENIX Annual Technical Conference USENIX Association

Figure 2: Control flow when intercepting system calls in Phantom.

3.2.4 System Call Interposition

Phantom co-opts processes into the simulation by intercept-
ing functions at the system call interface using two intercep-
tion strategies: preloading and seccomp (see Figure 2).
Primary Strategy: Preloading: Recall from §3.2.3 that Phan-
tom preloads a shared library shim into each process it exe-
cutes using the LD_PRELOAD environment variable. Because
the shim is preloaded, the dynamic loader loads the shim be-
fore all other shared objects linked to the managed process
and the shim is the first library searched when attempting to
dynamically resolve symbols. This feature allows us to selec-
tively override functions in other shared libraries by supplying
identically named functions with alternative implementations
inside the shim. Preloading is efficient, as it changes only
the address of the instruction that is next executed when a
dynamically-linked function is invoked. Therefore, we use
preloading as our primary interception strategy.

Notice that preloading works by intercepting shared library
functions, not system calls. While preloading can interpose dy-
namically linked calls to libc system call wrapper functions
made from outside of libc, it cannot interpose the statically
linked calls made from inside of libc (e.g., internal calls from
printf to write).3 If using preloading alone, we would need
to reimplement printf and any other libc functionality we
wanted to support and not just the system call wrappers—an
untenable engineering burden. Preloading alone would also
fail to intercept system calls made without using libc at all,
e.g., those made by directly using a syscall instruction.
Secondary Strategy: seccomp: Phantom intercepts system
calls that are not handled by the preloading strategy using the
kernel’s seccomp (secure computing) facility. The seccomp
facility enables a process to set a filter on the system calls that
are made by the process and to associate an action with the
filter. We install a seccomp filter that traps all system calls
except for: (i) sigreturn; and (ii) system calls originating
from Phantom’s own preloaded shim. We install a SIGSYS
signal handler for system calls trapped by the seccomp filter;
whenever a system call matching the filter is invoked, the
kernel traps it and instead calls our signal handler function.

We use seccomp as our secondary interception strategy
because, although it can intercept all system calls, it is less
efficient than preloading; it requires: (i) a mode transition

3APIs that invoke vDSO functions (e.g., time) rather than make system
calls can either be preloaded or we can dynamically rewrite the vDSO to
guarantee that it makes interposable system calls [55].

from the process to the kernel when the system call is invoked;
(ii) execution of the seccomp filter; and (iii) a mode transition
back to the process to invoke the shim callback function.
Because most system calls are preloadable, we infrequently
incur the additional overhead from seccomp in practice.

3.2.5 Emulating System Calls
Both system call interception strategies from §3.2.4 result

in a syscall handler function being executed in the shim, i.e.,
within the managed process. System calls can be emulated
either directly in the shim or in the controller (see Figure 2).
In the Shim: Frequently made system calls that can be em-
ulated using little state from the controller can be serviced
directly in the shim without incurring additional overhead
related to IPC. For example, the shim directly handles the
time, gettimeofday, and clock_gettime system calls by
arranging for the controller to share and maintain the cur-
rent simulation time in a shared memory control block that is
accessible to the shim as described in §3.2.6.
In the Controller: The remaining system calls are serviced
in the simulator controller process. The system call number
and arguments are sent to the controller using the IPC control
channel as described in §3.2.6. The controller handles the sys-
tem calls internally using lightweight implementations that
effectively form a simulated kernel that completely replaces
the functionality normally provided by the Linux kernel. The
simulated kernel (re)implements (i.e., simulates) important
system functionality, including: the passage of time; input and
output operations on file, socket, pipe, timer, and event de-
scriptors; packet transmissions with respect to transport layer
protocols such as TCP and UDP; and aspects of computer
networking including routing, queuing, and bandwidth lim-
its. (See Appendix D for additional details.) Importantly, this
approach enables us to establish a private, simulated network
environment that is completely isolated from the real network,
but is internally interoperable and entirely controllable.
Determinism: Phantom uses a pseudorandom generator that
is seeded with a configurable seed as its single source of ran-
domness throughout the simulation. Care is taken to ensure
that all random bytes that are needed during the simulation
are initiated from this source, including during the emula-
tion of system calls such as getrandom and when emulating
reads from files like /dev/*random. This approach allows
Phantom to produce deterministic simulations, improving sci-
entific control over the experimentation process and enabling
experimental results to be replicated.

3.2.6 Managed Process-to-Controller Communication
We use control channels to exchange fixed-size messages

with each managed process (e.g., system call arguments), and
a memory manager to exchange dynamic amounts of data
(e.g., a buffer passed to a send system call; see Figure 3).
Control Channel: Phantom establishes a control channel
with the shim of each managed process by allocating an ini-
tial block of shared memory and sharing the handle to this

USENIX Association 2022 USENIX Annual Technical Conference 331

Figure 3: Phantom uses shared memory as a control channel, mod-
ulating control using semaphores. The app1 shim intercepts send,
writes its arguments into the shared syscall registers, and then uses
semaphores to pass control. The controller reads the registers, uses
the memory manager to directly copy the send buffer into simulated
packets, and schedules an event so the packets arrive at the receiver
following network semantics. The controller writes the retval register
and passes control back so app1 continues running. An analogous
process occurs when app2 calls recv (or any other system call).

memory during process startup using an environment vari-
able. This control block uses a fixed data structure layout that
includes semaphores and messaging state (e.g., system call
arguments). The semaphores provide a safe and efficient way
for a message sender to signal that a new message is available
and for a message receiver to wait for a new message; the
controller uses this functionality to modulate the execution
state of the process (see §3.2.7). We use shared memory and
semaphores because we found this combination to perform
better than alternative approaches (see Appendix C).
Memory Manager: We designed an inter-process memory ac-
cess manager to enable the controller to directly and efficiently
read and write the memory of each managed process with-
out extraneous data copies or control messages. The memory
manager tracks the memory mappings that are active across
various regions of a process’s memory, which are analogous
to the mappings found in the /proc/<pid>/maps file. Upon
initialization, the memory manager creates a sparse memory
file for each process, where a virtual address in the process
corresponds to the same offset in the file. The memory man-
ager initially remaps the process’s stack and heap memory
regions into this file. As the process runs, the memory man-
ager brokers all read, write, or other mapping requests that
involve managed process memory in order to: (i) also map
requests for anonymous private regions (such as those made
when serving large allocation requests) into the shared file;
(ii) maintain a consistent view of the process’s address space;
and (iii) simplify system call handling by translating memory
pointers to shared memory pointers as needed. Whenever the
memory manager receives an access request for an address
that is not mapped into the shared file, it utilizes the kernel’s
process_vm_readv and process_vm_writev facilities to
directly transfer data between the controller and the managed
process’s address space without copying it into kernel space.

3.2.7 Managed Process/Thread Scheduling

We use the IPC control channel from §3.2.6 to control the
execution state of each managed process. When a process

first loads, it immediately waits on the channel semaphore
to receive a message from Phantom before starting. When
a Phantom worker runs (following the algorithm in §3.2.2),
the worker initially sends a start message to the process it
manages and waits to receive a message back from the pro-
cess. The process then runs until it invokes a system call that
is interposed as described in §3.2.4, sends a system call re-
quest message back through the control channel to the waiting
Phantom worker, and waits to receive the system call result
message from Phantom.

There are two possible scheduling outcomes when a Phan-
tom worker handles a system call requested by a managed
process. For system calls that can be handled immediately
(non-blocking calls, or blocking calls for which a result is
ready), the Phantom worker returns the result over the control
channel and the scheduling cycle continues. For system calls
that cannot be handled immediately (blocking system calls
whose result is not ready), the Phantom worker must wait for
some condition to become true (e.g., a packet to arrive or a
timeout to occur). Such conditions are internally registered,
and then the worker leaves the managed process in an idle
state while it continues executing simulation events (and ad-
vancing simulation time). When the condition later becomes
true (e.g., a timeout occurred), the worker executes an event
that causes it to check the system call state and return the time-
out result to the process over the control channel. The process
continues executing and the scheduling cycle continues.

The effect of this scheduling process is that each Phan-
tom worker only allows a single thread of execution across
all processes it manages; each of the remaining managed
processes/threads will always be idle, waiting for a result mes-
sage from the worker for the previously requested system call.
Using this scheduling process, Phantom has precise control
over the execution state of all managed processes and guar-
antees nonconcurrent access of managed processes’ memory
through the memory manager from §3.2.6.

3.2.8 Linux CPU Scheduling

Phantom is designed to work with the Linux CPU affin-
ity (i.e., CPU pinning) scheduling feature. CPU affinity is a
scheduling attribute associated with running Linux processes.
A process’s CPU affinity can be adjusted to restrict the pro-
cess to run only on a specified subset of CPUs (e.g., a single
CPU). CPU pinning can improve performance by reducing
the frequency of cache misses, CPU migrations, and context
switches. In particular, Linux semaphores shared between
two same-core processes incur fewer context switches than
when shared between cross-core processes (see Appendix C).
Recall that Phantom will run either a worker thread or one
of its managed processes, but never both at the same time.
This design choice enables us to naturally pin each worker
and all of its managed processes to the same core in order to
capitalize on the CPU pinning performance benefits.

332 2022 USENIX Annual Technical Conference USENIX Association

4 Implementation

We implement Phantom using the plugin-based Shadow as a
basis because: (i) we will show in §5.4 that Shadow outper-
forms other simulators; and (ii) it will be fairer to compare the
plugin- and process-based architectures using tools that share
the same foundation. See Appendix A.3 for Shadow details.
Transforming Shadow: We forked Shadow v1.14.0 and iden-
tified the components that are no longer necessary for Phan-
tom. Of the 94,259 lines of code (LoC) in Shadow v1.14.0,4

we removed 47,959 LoC (50.9%) containing a custom ver-
sion of the GNU portable threads library that was used to
simulate application threading [48], 14,498 LoC (15.9%) con-
taining a custom loader that dynamically loads plugins using
dlmopen [63], and 6,559 LoC (7.0%) that implemented the
interface between Shadow and the libc functions it preloads.
We also found that 6,315 LoC (6.7%) implemented tests and
2,123 LoC (2.3%) implemented tools, leaving just 16,805
LoC (17.8%) implementing core simulator functionality that
Phantom integrates (see Appendix D for more details).
Implementing Phantom: We implemented Phantom’s de-
sign from §3 on top of our stripped down version of Shadow.
Our full Phantom implementation supports 164 system calls
and contains 56,742 LoC: tests account for about 15,653
LoC (27.6%), tools account for 1,956 LoC (3.4%), and the re-
maining 39,133 LoC (69.0%) implements core functionality.

5 Evaluation

We evaluate Phantom by running micro- and macrobench-
marks, by verifying its simulation accuracy, and by comparing
it to related tools. (See Appendix E for additional details.)

In our benchmarks, we compare three distinct state-of-
the-art simulator architectures (see Appendix A): (i) multi-
process, seccomp (Phantom); (ii) multi-process, ptrace
(gRaIL); and (iii) uni-process, plugin namespaces (Shadow).
For fairness, we compare all three architectures running on
top of an identical simulator framework and network stack
(i.e., Shadow’s), thus ensuring that we can isolate performance
differences and attribute them exclusively to the change in ar-
chitecture and not to, e.g., differently inefficient code running
in independent code-bases.5

All experiments use CPU pinning and our primary intercep-
tion strategy (preloading) unless otherwise noted. All simula-
tions were repeated ten times with unique seeds; we present
the results as the mean across the ten trials with 99% CIs.

4LoC are counted with the scc tool: https://github.com/boyter/scc
5Because gRaIL was originally implemented on top of NS-3, we ported

the design to Shadow by implementing ptrace as an optional alternative
to the seccomp secondary interposition strategy. We found and mitigated
many sources of ptrace overhead (see Appendix B) and our implementation
should be considered an optimized, near-best-case version of gRaIL.

only
ptra

ce

preload+ptra
ce

only
seccomp

preload+seccomp

uni-p
ro

cess
0

10

20

B
en

ch
m

ar
k

T
im

e
(µ

s)

16 16.0715.34
13.37

9.51

blocking nanosleep

only
ptra

ce

preload+ptra
ce

only
seccomp

preload+seccomp

uni-p
ro

cess
0

10

20

9.41 9.8 9.64

6.8

0

nonblocking nanosleep

only
ptra

ce

preload+ptra
ce

only
seccomp

preload+seccomp

uni-p
ro

cess
0

10

20
15.6416.0315.26

11.13

7.78

1k write+read

Figure 4: Time to execute blocking, nonblocking, and io-based sys-
tem calls using several interception methods, compared to Shadow’s
uni-process preload-based design.

5.1 Performance: Microbenchmarks

Setup: We anticipate that one of the major sources of over-
head in a multi-process design is due to inter-process com-
munication and context switching, which in Phantom oc-
curs whenever a system call is executed. There are three
main types of system calls: (i) blocking calls that require the
simulator to update state (e.g., advance time) before return-
ing; (ii) nonblocking calls that can return immediately; and
(iii) input/output (io) calls that involve reading or writing a dy-
namically sized buffer. We benchmark these operations using
a small program that either invokes the nanosleep system
call (with a timeout of 1 for blocking or 0 for nonblocking),
or invokes a write and then a read operation on a pipe. The
program loops repeatedly for 10k iterations and measures the
time required to complete each benchmark after timing 10k
iterations of a no-op as a baseline. We report the difference be-
tween the mean time to execute each of the three benchmarks
and the mean time to execute the no-op baseline.
Results: We ran the benchmarks in our multi-process archi-
tecture using several alternative interception methods, and in
Shadow’s uni-process preload-based architecture. Figure 4
shows similar trends across all three benchmarks. First, we
notice that using preloading and ptrace together is slightly
slower than using ptrace alone; this is because the shim
intercepts the system call and then (since it does not have
a handler) it invokes the system function to pass control to
ptrace, which adds a few instructions relative to the standard
use of ptrace. Second, seccomp with preloading is signifi-
cantly faster than seccomp alone (and both ptrace modes),
because preloading allows us to intercept system calls without
incurring the overhead of a mode transition and the execu-
tion of the seccomp filter. Third, the uni-process design is the
fastest of all methods tested; while the blocking and io-based
system calls incur some overhead due to switching portable
threads (using setjmp and longjmp), a non-blocking system
call is effectively a function call.

Figure 5 shows the results from running our io-based
benchmark while setting the buffer size to 1k, 4k, 16k, and
64k bytes. Phantom with the relatively simple approach of
using process_vm_readv and process_vm_writev is the

USENIX Association 2022 USENIX Annual Technical Conference 333

https://github.com/boyter/scc

pro
c vm

pro
c mmap

uni-p
ro

cess
0

20

40

B
en

ch
m

ar
k

T
im

e
(µ

s)

13.68
11.13

7.78

1k write+read

pro
c vm

pro
c mmap

uni-p
ro

cess
0

20

40

15.1
11.42

8.77

4k write+read

pro
c vm

pro
c mmap

uni-p
ro

cess
0

20

40

20.44

11.5611.57

16k write+read

pro
c vm

pro
c mmap

uni-p
ro

cess
0

20

40
44.16

22.66
25.28

64k write+read

Figure 5: Time to execute io-based system calls using Phantom’s
process_vm_read and process_vm_write fallback facilities com-
pared to its primary inter-process memory mapping design.

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

20

40

60

B
en

ch
m

ar
k

T
im

e
(µ

s)

37.55

13.37

33.16

10.24

blocking nanosleep

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

20

40

60

18.45

6.8

23.65

12.19

nonblocking nanosleep

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

20

40

60
50.26

11.13

40.21

10.82

1k write+read

Figure 6: Time to execute our microbenchmarks in Phantom when
using the Linux CPU pinning and realtime scheduling features.

slowest. This is partly from the context switch overhead be-
tween Phantom and the managed thread for each read and
write call, and the kernel/user mode transition overhead of
making the process_vm system calls. While these overheads
are not dependent on the buffer size, and are amortized for
larger buffer sizes, the process_vm system calls have signif-
icant per-page overhead for validating permissions, pinning
each page in memory before doing the copy, and then un-
pinning them. Hence, the process_vm approach gets signifi-
cantly worse than the alternatives as the buffer size increases.

While Phantom’s mmap-based approach (§3.2.6) still has the
fixed overhead of context switches between Phantom and the
managed thread for each read and write, it uses an interval-
map of mapped regions (not pages) to validate and translate
each pointer. Since this cost is fixed, rather than per-page as
with the process_vm calls, its overhead relative to the uni-
process approach is amortized for larger buffers and becomes
less than the uni-process overhead for 64 KB buffers.

Figure 6 shows the time to execute our benchmarks using
the Linux CPU pinning feature described in §3.2.8 in addition
to the sched_fifo Linux realtime scheduler. We observe
that CPU pinning significantly improves Phantom’s perfor-
mance while mixed results are obtained when using realtime
scheduling. Run time under realtime scheduling decreases
by 48–73% when adding CPU pinning, indicating that the
primary benefit is from pinning. CPU pinning improves per-
formance particularly well in Phantom due to our design in
which a worker modulates its running state and that of each
of its managed processes such that no two of these run con-

currently. Therefore, workers and their managed processes
will effectively share the same CPU core, improving caching
and limiting cross-core migration. We also tested Phantom
using ptrace and Shadow’s uni-process design and found
that pinning provides comparable or better performance than
other modes (see Appendix E.1 for more details).

5.2 Performance: Macrobenchmarks
While microbenchmarks enable us to test the effects of

system call operations in isolation, macrobenchmarks provide
us with a more wholistic understanding of performance while
simulating a larger distributed network.

5.2.1 Setup

To run our macrobenchmarks, we write a simple peer-
to-peer (P2P) messaging application whose behavior is in-
spired by the parallel hold (PHOLD) model commonly used
to benchmark discrete-event simulators [20].6 Our P2P appli-
cation uses standard UDP sockets for network communication
and works as follows. Each peer first creates and sends some
number m of messages at startup using sendto and then uses
poll to wait for incoming messages to arrive. Whenever a
message is received with recvfrom: (i) a number c of AES
encryptions and c AES decryptions are performed to produce
computational load; and (ii) a new message with a 1k payload
is created and sent to produce network load. Whenever a peer
sends a message, it makes a weighted choice of the destina-
tion peer where peers’ weights are drawn from a configurable
probability distribution W ; we use W to create unbalanced
workloads across peers.

To benchmark performance we create distributed networks
with p peers, each running our P2P application on a distinct
virtual host. The network latency between each pair of hosts
is set to 50 ms and each host’s bandwidth is unrestricted. All
peers start at the same time and run for ten simulated sec-
onds, resulting in 200 communication rounds. Unless other-
wise mentioned, our experiments use defaults of p=1k peers,
m=100 messages, c=0 AES (encrypt, decrypt) sequences, and
W is the exponential function e−3x for x ∈ [0,1] (to produce
unbalanced peer workloads).

5.2.2 Results

Interception Strategy and LP Count: We run experiments
that vary the interception strategy and LP count to investigate
their effects on performance. Our results in Figure 7 show that
the uni-process Shadow simulation completes faster than the
multi-process Phantom simulations when using 14 or fewer
LPs (consistent with our microbenchmark results). However,
when the number of LPs exceeds 14, the seccomp intercep-
tion strategy (with or without preloading) performs better
than both the ptrace strategy and the uni-process design.
We observe diminishing returns and performance regressions

6We modify the PHOLD model because it is shown to lead to well-
balanced workloads that are not representative of real-world networks [11].

334 2022 USENIX Annual Technical Conference USENIX Association

7 14 21 28 35 42 49 56

Logical Processors Count

101

102

103

B
en

ch
m

ar
k

T
im

e
(s

)

only ptrace
preload+ptrace
only seccomp

preload+seccomp
uni-process

Figure 7: The time to complete our P2P benchmark across a vary-
ing set of interception strategies and number of logical processors
(i.e. concurrently active worker threads). The y-axis is in log scale.

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

100

B
en

ch
m

ar
k

T
im

e
(s

) 159.69

78.27

147.14

102.56

ptrace

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

100 91.76

34.32

105.77

32.37

seccomp

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

100
59.89 52.84 59.27 53.08

uni-process

Figure 8: Time to complete our P2P benchmark when using the
Linux CPU pinning and realtime scheduling features.

with ptrace and the uni-process design when using more
than 14 LPs (the number of cores available on each of the
two CPUs), while seccomp is able to make effective use of
additional LPs. Finally, using a large number of LPs causes
more than a 7× slowdown in ptrace (from 79s with 14 LPs
to 581s with 56 LPs) which we speculate is due to inefficient
kernel facilities. We observed similar trends in the initializa-
tion time—the time for Phantom to launch all processes or
Shadow to load all namespaces: Phantom with seccomp is
more than 3× as fast (0.84s) as both ptrace (3.5s) and the
uni-process design (2.6s) at initializing processes when using
28 LPs (see Appendix E.2 for more details).

We conclude from our results that using a combination of
the preloading and seccomp interception strategies leads to
the best performance in Phantom: preloading with seccomp
improves performance over seccomp alone because it reduces
the overhead from mode transitions and executions of the
seccomp filter. As in the microbenchmarks, preloading has
little effect when used with ptrace as expected. Finally, using
a number of LPs equal to the number of CPU cores (i.e., half
of the available hyper-threads) produces reasonable perfor-
mance for both Phantom and Shadow. Hence, we use 28 LPs
and enable preloading in the remaining experiments.
Linux CPU Scheduling: Figure 8 shows the results of our
investigation into the effects of Linux CPU scheduling on the
performance of our macrobenchmark. As in our microbench-
marks, we find that CPU pinning has a positive effect on per-
formance: Phantom with seccomp completes the benchmark
2.5× faster with CPU pinning than with standard scheduling.

pro
c vm

pro
c mmap

uni-p
ro

cess
0

20

40

60

B
en

ch
m

ar
k

T
im

e
(s

)

35.6 34.7

53.1

pro
c vm

pro
c mmap

uni-p
ro

cess
0

1

2

M
ax

R
A

M
U

se
d

(G
iB

)

1.17

1.49

2.24

pro
c vm

pro
c mmap

uni-p
ro

cess
0

1

P
ag

e
F

au
lt

s
(×

10
6
)

0.35
0.47

1.52

Figure 9: Performance of our P2P benchmark using Phantom’s
process_vm_read and process_vm_write fallback facilities com-
pared to its primary inter-process memory mapping design.

th
read/host

th
read/LP

0

20

40

60

B
en

ch
m

ar
k

T
im

e
(s

)

33.1

40.5

seccomp

th
read/host

th
read/LP

53.1
54.9

uni-proc

th
read/host

th
read/LP

0

1

2

M
ax

R
A

M
U

se
d

(G
iB

)

1.5

1.1

seccomp

th
read/host

th
read/LP

2.25

1.6

uni-proc

th
read/host

th
read/LP

0

2

4

6

8

10

C
P

U
M

ig
ra

ti
on

s
(×

10
3
)

9.31

3.24

seccomp

th
read/host

th
read/LP

5.61

0.06

uni-proc

Figure 10: Performance of our P2P benchmark when Phantom
(seccomp) and Shadow (uni-proc) are configured to use one worker
thread per virtual host or one worker per logical processor (LP).

Pinning has a similar but slightly smaller relative effect on
ptrace, and a positive but minor effect on the uni-process
design. We observe in our measurements that pinning reduces
the number of CPU migrations that occur during the simu-
lation from 5.8M to 8.6k for Phantom with seccomp, from
3.6M to 8.1k for Phantom with ptrace, and from 180k to
5.7k for Shadow’s uni-process design. Realtime scheduling
again shows mixed results, but always performs better than
standard scheduling when combined with pinning. We con-
clude that pinning provides a consistently positive effect on
performance, and enable it in the remaining experiments.
Inter-Process Memory Manager: Figure 9 shows the per-
formance of Phantom’s inter-process memory mapping de-
sign across three metrics. First, we find that Phantom com-
pletes the benchmark in comparable time when: (i) using
the primary mmap-based approach; and (ii) being restricted
to the fallback approach of using process_vm_read and
process_vm_write. Recall that our P2P macrobenchmark
sends messages with 1k payloads, and in our microbench-
mark we found that the performance of the memory map-
ping approach improves relative to the fallback mechanism
as the payload size increases. Second, we observe that the
memory mapping design uses slightly more RAM and causes
slightly more page faults because it requires additional state
to track the memory mappings. Phantom always finishes the
benchmark sooner than Shadow’s uni-process design (<70%)
while using less RAM (<65%) and causing fewer page faults
(<35%). (We find that the same general trends hold when
running Phantom with ptrace; see Appendix E.2 for details.)

USENIX Association 2022 USENIX Annual Technical Conference 335

1k 2k 4k 8k 16k 32k 64k

Virtual Host Count

100

101

102

T
ot

al
T

im
e

(m
)

ptrace
seccomp
uni-process

(a) Time to Complete Benchmark

1k 2k 4k 8k 16k 32k 64k

Virtual Host Count

101

103

In
it

ia
liz

e
T

im
e

(s
)

ptrace
seccomp
uni-process

(b) Time to Launch Processes or Load Namespaces

1k 2k 4k 8k 16k 32k 64k

Virtual Host Count

101

102

M
ax

R
A

M
U

se
d

(G
iB

)

ptrace
seccomp
uni-process

(c) Memory Used during Benchmark

Figure 11: Performance of our P2P benchmark when scaling the number of hosts from 1k to 64k hosts (i.e., processes in Phantom or namespaces
in Shadow). Both axes are plotted in log scale on all subplots. Running 32k or more hosts in Shadow exceeded the machine’s RAM (256 GiB).

Worker Thread Scheduling: Figure 10 shows the perfor-
mance of our work-stealing worker thread scheduling design
(described in §3.2.2) in which we run one worker thread
per virtual host, compared to a work-stealing algorithm from
Shadow that runs one worker thread per logical processor
(LP). The benchmark completes more quickly when using
one worker thread per host (i.e., 1000 workers in our bench-
mark) than when using one worker per LP (i.e., 28 workers in
this experiment), for both Phantom and Shadow. We observe
that by using additional threads, we increase the maximum
RAM used and the number of CPU migrations that occur
while running the benchmark. (We again find that the same
general trends hold when running Phantom with ptrace;
see Appendix E.2 for details.) We conclude that using more
threads should be done in consideration of available RAM.
Peer Workload: We conducted an investigation into the ef-
fects of varying peer workloads by varying the number of
messages m, the number of AES (encrypt, decrypt) sequences
c, and the peer weight distribution W . As expected, increasing
m and c resulted in a roughly linear increase in benchmark
times in both Phantom and Shadow, while the workload dis-
tributions we tested had minor effect on performance. We
present more details in Appendix E.2 due to space constraints.
Distributed Network Scale: We investigate the performance
of our P2P benchmark while scaling the network size from
1k to 64k hosts. Our results in Figure 11 show that Phantom
with seccomp outperforms ptrace and Shadow’s uni-process
design in terms of benchmark time, while initialization time
(the time to launch all processes in Phantom or load all names-
paces in Shadow) and memory usage both scale more effi-
ciently in Phantom than in Shadow. (Running 32k or more
hosts in Shadow exceeded the machine’s RAM (256 GiB).)

Figure 11a shows that the benchmark time exhibits growth
that is nearly linear in the number of hosts (ptrace: r = 0.999,
seccomp: r = 0.995, uni-process: r = 0.994, where r = 1
indicates perfect correlation) with 91ms per host for ptrace,
51ms per host for seccomp, and 96ms per host for uni-process.
Accordingly, uni-process completes the 16k benchmark in
25m compared to 21m for ptrace and 10m for seccomp
despite running the 1k benchmark in 55s compared to 78s
for ptrace and 33s for seccomp. Phantom with seccomp
completed the benchmark fastest for all tested network sizes.

Figure 11b shows how the initialization time changes
as the host count increases. Here, clear separation between
Phantom’s design (which launches multiple processes) and
Shadow’s uni-process design (which loads multiple names-
paces) can be observed through visual inspection. Despite a
slight shift in growth between 4k and 16k hosts for seccomp,
we find that Phantom is more efficient and scalable than
Shadow at initializing virtual hosts’ processes. For exam-
ple, at 16k hosts Shadow completed initialization in about 8m
while Phantom completed it in less than 1.5m.

Figure 11c shows that Phantom uses significantly less RAM
to complete the benchmark than Shadow. At 1k hosts Shadow
uses 2.3 GiB but Phantom with seccomp only uses 1.5 GiB
(∼65%), while at 16k hosts Shadow uses 90 GiB but Phan-
tom with seccomp only uses 26 GiB (∼29%). Phantom’s
relatively lower memory usage allows us to scale the number
of hosts in the P2P benchmark to 4× the size of the largest
network in which a benchmark was successful in Shadow.
Conclusions: We draw two primary conclusions from our
benchmarks. First, Phantom outperforms the state-of-the-
art uni-process Shadow design by effectively mitigating the
multi-process performance challenges identified in §2.3. Sec-
ond, Phantom consistently outperforms a simulator built
around our implementation of ptrace (which we argue in
Appendix B outperforms gRaIL’s use of ptrace).

5.3 Accuracy: Verification
In this section, we verify that Phantom can accurately sim-

ulate basic network characteristics as well as more complex
Tor overlay networks [17]. Recall that, as described in §4,
Phantom integrates the network stack from Shadow; we do
not claim the design or implementation of this network stack
as a contribution of this paper. Shadow’s network has already
been extensively validated in previous work [30, 32, 37, 40].
Therefore, our primary focus is to verify that Phantom does
not reduce the accuracy of the simulated network relative to
Shadow; we consider our verification successful if Phantom
and Shadow produce similar simulated network results.
Basic Network Verification: We evaluate the extent to which
Phantom can accurately simulate basic network characteris-
tics that are typical of LAN and WAN networks. Our evalua-
tion considers two nodes that communicate over a single link.

336 2022 USENIX Annual Technical Conference USENIX Association

0 500 1000

0

500

1000
configured latency: 10 ms

0 50 100 150

0

5

10
configured bandwidth: 10 Mbit/s

0 500 1000

0

500

1000

A
ch

ie
ve

d
B

an
d

w
id

th
(M

b
it

/s
)

configured latency: 75 ms

0 50 100 150

0

50

100
configured bandwidth: 100 Mbit/s

0 500 1000
Configured Bandwidth (Mbit/s)

0

500

1000
configured latency: 175 ms

0 50 100 150
Configured Latency (ms)

0

500

1000
configured bandwidth: 1000 Mbit/s

limit phantom shadow baremetal

Figure 12: Our basic network verification experiments show that
Phantom and Shadow produce identical iperf results across a range
of configured bandwidths and latencies and that Phantom achieves
comparable or higher link utilization than our baremetal setup.

We configure the link with a latency and bandwidth capacity,
and then use iperf and a UDP ping application to measure
the available network bandwidth and latency, respectively,
between the nodes. We conducted the experiment across a
range of latency and bandwidth settings in Phantom, Shadow,
and using two baremetal machines in our lab connected by a
10 Gbit/s physical link (where we used netem to emulate the
configured latency and bandwidth). Our results in Figure 12
show that: (i) Phantom and Shadow produce indistinguish-
able results across all tested bandwidths and latencies; and
(ii) Phantom generally achieves comparable or higher link
utilization than the netem-based baremetal setup. (See Ap-
pendix E.3.1 for more details, including a description of our
latency verification which shows a maximum error of 3%.)
Tor Network Verification: We evaluate the extent to which
Phantom can accurately simulate more complex Tor networks
using the state-of-the-art Tor modeling tools and methods [40].
We configure a Tor network using a total of 12,232 Linux pro-
cesses to generate a total of 74 Gbit/s of network traffic, which
is equivalent to the expected combined traffic of about 238k
users and represents a scale of about 30% of the public Tor
network (more explanation is provided in Appendix E.3.2).

We run 10 Tor simulations for 60 simulated minutes each
in both Phantom and Shadow and find that: (i) both tools re-
quire 27 real hours to run each simulation; and (ii) Shadow
uses at most 1116 GiB of RAM while Phantom uses at most
1032 GiB (92.5% relative to Shadow). We measure no signifi-
cant difference in the simulated network performance across
6 metrics including circuit build time, circuit round trip time,
circuit goodput, and Tor network transfer times for 50 KiB,
1 MiB, and 5 MiB files: Figure 13 shows that the performance
distributions from Phantom and Shadow are within CI bounds.
We conclude that Phantom does not reduce the accuracy rela-
tive to Shadow in conducting network experiments.

0 2
Circuit Build Time (s)

0.0

0.9

0.99

C
D

F
(t

ai
l

lo
g)

0.0 0.5
Circuit RTT (s)

0 5 10
Circuit Goodput (Mbit/s) ..

0 1 2
TTLB 50KiB (s)

0.0

0.9

0.99

C
D

F
(t

ai
l

lo
g)

0.0 2.5 5.0
TTLB 1MiB (s)

0 10
TTLB 5MiB (s)

phantom shadow

Figure 13: Our Tor network verification experiments show that
Phantom and Shadow produce nearly identical Tor performance
results (within CI bounds) since they share a network stack.

See Appendix E.3.2 for additional analyses and perfor-
mance comparisons across a total of 6 network scale factors.

5.4 Comparison to Related Tools
In this section, we compare Phantom to popular tools im-

plementing emulation, simulation, and hybrid architectures.
Mininet: Mininet is a network emulator that creates (i) a net-
work of virtual hosts that run applications as Linux processes;
(ii) virtual network interfaces within the Linux kernel; and
(iii) virtual switches, controllers, and links that are managed
by Mininet [45]. (See Appendix A.1 for more details.)

Mininet’s network emulation architecture offers poor con-
trol and scalability because the host kernel is responsible for
handling packet events, and the packet routing process is un-
predictable and sensitive to load. If the host machine becomes
overloaded, Mininet will experience time distortion that will
degrade experiment realism and control.

We demonstrate Mininet’s limitations by running a peer-
to-peer benchmark (see §5.2.1) while scaling the number
of peers in the experiment. Because each peer introduces a
constant number of packets into the experiment, the expected
number of packets and work to perform in the experiment
grows linearly with the number of hosts. However, we find
that load and network congestion on the host machine affects
the outcome of the experiment. Figure 14 shows the average
number of packets received per second by the virtual hosts
(averaged over 10 trial runs). As the host machine becomes
more loaded with virtual peers, its packet forwarding capacity
is limited, and fewer packets than expected are forwarded. In
contrast, Figure 14 shows that Phantom produces the expected
packet throughput in simulated time (Phantom may run faster
or slower than real time as necessary to achieve correctness).
NS-3 and gRaIL: NS-3 is a popular network simulator
that simulates all aspects of networking and all application
logic [26], while gRaIL extends NS-3 by enabling simulated
nodes to directly execute applications as standard Linux pro-
cesses managed by the kernel’s ptrace facility [54]. (See
Appendix A.2 for more details.)

USENIX Association 2022 USENIX Annual Technical Conference 337

20 40 60 80 100

Virtual Host Count

0

1

2

A
vg

.
P

ac
ke

ts
/s

×105

phantom
mininet

Figure 14: Average packet forwarding rate of a fixed P2P messaging
workload in Phantom and Mininet as the number of hosts is varied.

phantom
shadow ns-3 grail

100

101

R
u

n
ti

m
e

(s
)

0.8 0.7

2.5

12.3

101 Hosts

phantom
shadow ns-3 grail

101

102

2.7

5.8 7

100.3

102 Hosts

phantom
shadow ns-3 grail

102

103

22.6

50.6
75.9

975.3

103 Hosts

Figure 15: Runtime of a fixed P2P messaging workload in Phantom,
Shadow, NS-3, and gRaIL as the number of hosts is varied.

We evaluate the performance cost of running our P2P
benchmark from §5.2.1, replicating its logic so that it could
also run as an NS-3 application. We configured the benchmark
with m=100 messages, c=0 AES operations, and W=uniform
distribution. We vary the number of hosts while configuring
50 ms pairwise latencies and 1 Gbit/s network bandwidths,
and run experiments using multiple simulation tools.

Figure 15 shows the real time (mean of 10 trial runs) re-
quired to complete 10 seconds of network simulation paral-
lelized across all cores on a blade server (see Appendix E.1)
as the number of hosts is varied.7 In our 1k host experiment,
we find that (i) Phantom is 2.2× and 3.4× faster than Shadow
and NS-3, respectively; and (ii) gRaIL’s inefficient multi-
process design is about 13× slower than NS-3 alone, and
43× slower than Phantom, demonstrating that Phantom effec-
tively eliminates IPC overhead as a performance bottleneck
and overcomes the multi-process challenges from §2.3.
Shadow: Shadow [30] implements a hybrid, uni-process ar-
chitecture in which applications are directly executed in plu-
gin namespaces and preloading is used (via LD_PRELOAD) to
intercept libc function calls and hook the applications into
the simulation. (See Appendix A.3 for more details.)

Although Figure 15 shows that it performs well, Shadow’s
plugin architecture is limited in its compatibility, correctness,
and maintainability: as shown in Table 2, applications run-
ning in Shadow must be compiled as position-independent,
must be dynamically linked to libc, and must not make sys-
tem calls via statically linked or assembly code (or else they
will not be interceptable). Because we cannot guarantee that

7Runtimes are normalized by the amount of work performed (i.e., packets
delivered) by each simulator; this resulted in runtime adjustments of < 5%
for all but gRaIL, which delivered only 56% of the expected packets and thus
had its runtime adjusted by a factor of 1.8.

Table 2: Application Properties Supported in Hybrid Simulators

Application Property Shadow Phantom

Multiple threads (e.g., support for pthreads)
Multiple processes (e.g., support for fork)
Not position-independent (i.e., PIC or PIE)
Not dynamically linked to libc
Symbols not exported to dynamic symbol table
System calls made in statically linked code
System calls made in assembly (i.e., avoiding libc)
100% statically linked (e.g., some go programs)

Does not work in tool or architecture Works in tool & architecture
Not implemented in tool (as of writing) but supported by architecture

libc functions will not internally issue multiple unique sys-
tem calls, Shadow’s design requires reimplementing both the
kernel system calls and the libc functions that invoke them.

Phantom overcomes Shadow’s limitations by running ap-
plications as standard Linux processes, allowing us to take
advantage of the kernel’s high-performance process isolation
features. Moreover, Phantom uses seccomp to guarantee that
system calls can be intercepted no matter how the applica-
tion initiates them (see Table 2), enabling us to reduce the
emulation scope to the system call interface and support a
much larger set of applications; Phantom’s supported applica-
tion set is primarily limited by the system calls and protocols
implemented in its simulated kernel, which can be extended
over time (our design could also be incorporated into other
simulators, such as NS-3). Phantom enjoys these advantages
while also meeting or exceeding Shadow’s performance (as
we have shown throughout §5).

6 Conclusion

We have designed, implemented, and thoroughly evaluated
Phantom, a novel, high-performance network simulator for
large-scale distributed systems. Phantom’s multi-process
design eliminates the compatibility, correctness, and main-
tainability limitations that we believe have inhibited the
widespread adoption of existing plugin-based simulators.
With our innovative synthesis of efficient process control,
system call interposition, and data transfer mechanisms, Phan-
tom also overcomes the inter-process performance challenges
of the state-of-the-art multi-process simulator. Through our
extensive evaluation, we have demonstrated that Phantom
achieves better performance and is more scalable than alter-
native simulators across a variety of important benchmarks.
Acknowledgments: We thank our shepherd and the anony-
mous reviewers for their valuable feedback. We thank Steven
Engler for discussions about design and support during de-
velopment. This work has been partially supported by the
Office of Naval Research (ONR), the Defense Advanced Re-
search Projects Agency (DARPA), and the National Science
Foundation (NSF) under award CNS-1925497.

338 2022 USENIX Annual Technical Conference USENIX Association

References

[1] The Tor Metrics Portal. https://metrics.torproject.org,
April 2021.

[2] Performance Experiments. https://gitlab.torproject.
org/legacy/trac/-/wikis/org/roadmaps/CoreTor/
PerformanceExperiments, September 2021.

[3] Artifact for “Co-opting Linux Processes for High-
Performance Network Simulation”. https://netsim-
atc2022.github.io, May 2022.

[4] Shadow: real applications, simulated networks. https:
//shadow.github.io, May 2022.

[5] M. AlSabah and I. Goldberg. PCTCP: Per-circuit TCP-
over-IPsec Transport for Anonymous Communication
Overlay Networks. In ACM Conference on Computer
and Communications Security (CCS), 2013.

[6] M. AlSabah and I. Goldberg. Performance and Security
Improvements for Tor: A Survey. ACM Computing
Surveys (CSUR), 49(2):32, 2016.

[7] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. Mc-
Coy, S. Savage, and G. M. Voelker. DefenestraTor:
Throwing Out Windows in Tor. In Privacy Enhanc-
ing Technologies Symposium (PETS), 2011.

[8] M. AlSabah, K. Bauer, T. Elahi, and I. Goldberg. The
Path Less Travelled: Overcoming Tor’s Bottlenecks with
Traffic Splitting. In Privacy Enhancing Technologies
Symposium (PETS), 2013.

[9] A. Barton and M. Wright. DeNASA: Destination-Naive
AS-Awareness in Anonymous Communications. Pro-
ceedings on Privacy Enhancing Technologies (PoPETs),
2016(4):356–372, 2016.

[10] R. D. Blumofe and C. E. Leiserson. Scheduling multi-
threaded computations by work stealing. J. ACM, 46(5):
720–748, Sept. 1999.

[11] V. Bonnet. Benchmarking parallel discrete event simu-
lations. Master’s thesis, Utrecht University, 2017.

[12] R. Chertov, S. Fahmy, and N. B. Shroff. Fidelity of
network simulation and emulation: A case study of tcp-
targeted denial of service attacks. ACM Transactions on
Modeling and Computer Simulation, 19(1), Jan. 2009.

[13] W.-F. Chiang, G. Gopalakrishnan, Z. Rakamaric, D. H.
Ahn, and G. L. Lee. Determinism and reproducibility in
large-scale hpc systems. In Workshop on Determinism
and Correctness in Parallel Programming, 2013.

[14] B. Cohen. Incentives build robustness in bittorrent. In
Workshop on Economics of Peer-to-Peer systems, 2003.

[15] B. Conrad and F. Shirazi. Analyzing the Effectiveness
of DoS Attacks on Tor. In Conference on Security of
Information and Networks, 2014.

[16] S. Dahal, J. Lee, J. Kang, and S. Shin. Analysis on End-
to-End Node Selection Probability in Tor Network. In
International Conference on Information Networking
(ICOIN), 2015.

[17] R. Dingledine, N. Mathewson, and P. Syverson. Tor: The
Second-Generation Onion Router. In USENIX Security
Symposium (USENIX-Sec), 2004.

[18] T.-N. Dinh, F. Rochet, O. Pereira, and D. S. Wal-
lach. Scaling Up Anonymous Communication with Effi-
cient Nanopayment Channels. Proceedings on Privacy
Enhancing Technologies (PoPETs), 2020(3):175–203,
2020.

[19] S. Floyd and V. Paxson. Difficulties in simulating the
internet. IEEE/ACM Transactions on Networking, 9(4),
2001.

[20] R. M. Fujimoto. Performance of time warp under
synthetic workloads. In SCS Multiconference on Dis-
tributed Simulation, 1990.

[21] J. Geddes, R. Jansen, and N. Hopper. How Low Can
You Go: Balancing Performance with Anonymity in Tor.
In Privacy Enhancing Technologies Symposium (PETS),
2013.

[22] J. Geddes, R. Jansen, and N. Hopper. IMUX: Managing
Tor Connections from Two to Infinity, and Beyond. In
ACM Workshop on Privacy in the Electronic Society
(WPES), 2014.

[23] J. Geddes, M. Schliep, and N. Hopper. ABRA
CADABRA: Magically Increasing Network Utilization
in Tor by Avoiding Bottlenecks. In ACM Workshop on
Privacy in the Electronic Society (WPES), 2016.

[24] D. Gopal and N. Heninger. Torchestra: Reducing Inter-
active Traffic Delays over Tor. In ACM Workshop on
Privacy in the Electronic Society (WPES), 2012.

[25] H. Hanley, Y. Sun, S. Wagh, and P. Mittal. DPSelect:
A Differential Privacy Based Guard Relay Selection
Algorithm for Tor. Proceedings on Privacy Enhancing
Technologies (PoPETs), 2019(2):166–186, 2019.

[26] T. R. Henderson, S. Roy, S. Floyd, and G. F. Riley. ns-3
project goals. In Workshop on NS-2: the IP network
simulator, 2006. See also https://www.nsnam.org.

[27] N. Hopper. Challenges in protecting Tor hidden services
from botnet abuse. In Financial Cryptography and Data
Security (FC), 2014.

USENIX Association 2022 USENIX Annual Technical Conference 339

https://metrics.torproject.org
https://gitlab.torproject.org/legacy/trac/-/wikis/org/roadmaps/CoreTor/PerformanceExperiments
https://gitlab.torproject.org/legacy/trac/-/wikis/org/roadmaps/CoreTor/PerformanceExperiments
https://gitlab.torproject.org/legacy/trac/-/wikis/org/roadmaps/CoreTor/PerformanceExperiments
https://netsim-atc2022.github.io
https://netsim-atc2022.github.io
https://shadow.github.io
https://shadow.github.io
https://www.nsnam.org

[28] M. Imani, A. Barton, and M. Wright. Guard Sets in
Tor using AS Relationships. Proceedings on Privacy
Enhancing Technologies (PoPETs), 2018(1):145–165,
2018.

[29] M. Imani, M. Amirabadi, and M. Wright. Modified
Relay Selection and Circuit Selection for Faster Tor.
IET Communications, 13(17):2723–2734, 2019.

[30] R. Jansen and N. Hopper. Shadow: Running Tor in a
Box for Accurate and Efficient Experimentation. In
Network and Distributed System Security Symposium
(NDSS), 2012. See also https://shadow.github.io.

[31] R. Jansen, N. Hopper, and Y. Kim. Recruiting New Tor
Relays with BRAIDS. In ACM Conference on Computer
and Communications Security (CCS), 2010.

[32] R. Jansen, K. Bauer, N. Hopper, and R. Dingledine.
Methodically Modeling the Tor Network. In USENIX
Workshop on Cyber Security Experimentation and Test
(CSET), 2012.

[33] R. Jansen, P. F. Syverson, and N. Hopper. Throttling Tor
Bandwidth Parasites. In USENIX Security Symposium
(USENIX-Sec), 2012.

[34] R. Jansen, A. Johnson, and P. Syverson. LIRA:
Lightweight Incentivized Routing for Anonymity. In
Network and Distributed System Security Symposium
(NDSS), 2013.

[35] R. Jansen, J. Geddes, C. Wacek, M. Sherr, and P. Syver-
son. Never Been KIST: Tor’s Congestion Management
Blossoms with Kernel-Informed Socket Transport. In
USENIX Security Symposium (USENIX-Sec), 2014.

[36] R. Jansen, F. Tschorsch, A. Johnson, and B. Scheuer-
mann. The Sniper Attack: Anonymously Deanonymiz-
ing and Disabling the Tor Network. In Network and
Distributed System Security Symposium (NDSS), 2014.

[37] R. Jansen, M. Traudt, J. Geddes, C. Wacek, M. Sherr, and
P. Syverson. KIST: Kernel-Informed Socket Transport
for Tor. ACM Transactions on Privacy and Security
(TOPS), 22(1):3:1–3:37, December 2018.

[38] R. Jansen, M. Traudt, and N. Hopper. Privacy-
Preserving Dynamic Learning of Tor Network Traf-
fic. In ACM Conference on Computer and Commu-
nications Security (CCS), 2018. See also https://tmodel-
ccs2018.github.io.

[39] R. Jansen, T. Vaidya, and M. Sherr. Point Break: A
Study of Bandwidth Denial-of-Service Attacks against
Tor. In USENIX Security Symposium (USENIX-Sec),
2019.

[40] R. Jansen, J. Tracey, and I. Goldberg. Once is never
enough: Foundations for sound statistical inference
in Tor network experimentation. In USENIX Secu-
rity Symposium (USENIX-Sec), 2021. See also https:
//neverenough-sec2021.github.io.

[41] A. Johnson, R. Jansen, N. Hopper, A. Segal, and P. Syver-
son. PeerFlow: Secure Load Balancing in Tor. Pro-
ceedings on Privacy Enhancing Technologies (PoPETs),
2017(2):74–94, 2017.

[42] A. Johnson, R. Jansen, A. D. Jaggard, J. Feigenbaum,
and P. Syverson. Avoiding The Man on the Wire: Im-
proving Tor’s Security with Trust-Aware Path Selection.
In Network and Distributed System Security Symposium
(NDSS), 2017.

[43] K. Kiran, S. S. Chalke, M. Usman, P. D. Shenoy, and
K. Venugopal. Anonymity and Performance Analysis of
Stream Isolation in Tor Network. In International Con-
ference on Computing, Communication and Networking
Technologies (ICCCNT), 2019.

[44] J. Lamps, V. Babu, D. M. Nicol, V. Adam, and R. Kumar.
Temporal integration of emulation and network simu-
lators on linux multiprocessors. ACM Transactions on
Modeling and Computer Simulation, 28(1), Jan. 2018.

[45] B. Lantz, B. Heller, and N. McKeown. A network in a
laptop: rapid prototyping for software-defined networks.
In Workshop on Hot Topics in Networks (HotNets), 2010.
See also http://mininet.org.

[46] D. Lin, M. Sherr, and B. T. Loo. Scalable and Anony-
mous Group Communication with MTor. Proceedings
on Privacy Enhancing Technologies (PoPETs), 2016(2):
22–39, 2016.

[47] Z. Liu, Y. Liu, P. Winter, P. Mittal, and Y.-C. Hu. TorPo-
lice: Towards Enforcing Service-Defined Access Poli-
cies for Anonymous Communication in the Tor Net-
work. In International Conference on Network Proto-
cols, 2017.

[48] A. Miller and R. Jansen. Shadow-Bitcoin: Scalable
Simulation via Direct Execution of Multi-threaded Ap-
plications. In USENIX Workshop on Cyber Security
Experimentation and Test (CSET), 2015. See also
https://github.com/shadow/shadow-plugin-bitcoin.

[49] A. Mitseva, M. Aleksandrova, T. Engel, and
A. Panchenko. Security and Performance Impli-
cations of BGP Rerouting-Resistant Guard Selection
Algorithms for Tor. In IFIP International Conference
on ICT Systems Security and Privacy Protection, 2020.

[50] P. Mockapetris and K. J. Dunlap. Development of the
domain name system. In Communications Architectures
and Protocols, SIGCOMM ’88, page 123–133, 1988.

340 2022 USENIX Annual Technical Conference USENIX Association

https://shadow.github.io
https://tmodel-ccs2018.github.io
https://tmodel-ccs2018.github.io
https://neverenough-sec2021.github.io
https://neverenough-sec2021.github.io
http://mininet.org
https://github.com/shadow/shadow-plugin-bitcoin

[51] W. B. Moore, C. Wacek, and M. Sherr. Exploring the
Potential Benefits of Expanded Rate Limiting in Tor:
Slow and Steady Wins the Race with Tortoise. In Annual
Computer Security Applications Conference (ACSAC),
2011.

[52] S. Nakamoto. Bitcoin: A peer-to-peer electronic cash
system. 2008.

[53] R. Naumann, S. Dietzel, and B. Scheuermann. To-
wards more realistic network simulations: Leveraging
the system-call barrier. In Ad Hoc Networks, pages
180–191. Springer, 2017.

[54] R. Naumann, S. Dietzel, and B. Scheuermann. Push the
barrier: Discrete event protocol emulation. IEEE/ACM
Transactions on Networking, 27(2):635–648, 2019.

[55] O. S. Navarro Leija, K. Shiptoski, R. G. Scott, B. Wang,
N. Renner, R. R. Newton, and J. Devietti. Reproducible
containers. In Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

[56] J. Newsome (sporksmith). do_wait: make
PIDTYPE_PID case O(1) instead of O(n).
https://github.com/torvalds/linux/commit/
5449162ac001a926ad8884882b071601df5edb44,
May 2021.

[57] M. Perry. Shadow Experiments for Congestion Con-
trol. https://gitlab.torproject.org/tpo/core/tor/-/issues/
40404, December 2021.

[58] F. Rochet and O. Pereira. Waterfilling: Balancing the
Tor network with maximum diversity. Proceedings on
Privacy Enhancing Technologies (PoPETs), 2017(2):4–
22, 2017.

[59] F. Rochet and O. Pereira. Dropping on the Edge: Flexi-
bility and Traffic Confirmation in Onion Routing Proto-
cols. Proceedings on Privacy Enhancing Technologies
(PoPETs), 2018(2):27–46, 2018.

[60] F. Rochet, R. Wails, A. Johnson, P. Mittal, and O. Pereira.
CLAPS: Client-Location-Aware Path Selection in Tor.
In ACM Conference on Computer and Communications
Security (CCS), 2020.

[61] F. Shirazi, C. Diaz, and J. Wright. Towards Measuring
Resilience in Anonymous Communication Networks.
In ACM Workshop on Privacy in the Electronic Society
(WPES), 2015.

[62] H. Tazaki, F. Uarbani, E. Mancini, M. Lacage, D. Ca-
mara, T. Turletti, and W. Dabbous. Direct code execu-
tion: Revisiting library os architecture for reproducible
network experiments. In ACM conference on Emerging
networking experiments and technologies, 2013.

[63] J. Tracey, R. Jansen, and I. Goldberg. High Performance
Tor Experimentation from the Magic of Dynamic ELFs.
In USENIX Workshop on Cyber Security Experimenta-
tion and Test (CSET), 2018.

[64] F. Tschorsch and B. Scheuermann. Mind the Gap: To-
wards a Backpressure-Based Transport Protocol for the
Tor Network. In USENIX Symposium on Networked
Systems Design and Implementation (NSDI), 2016.

[65] M. T. Vandevoorde and E. S. Roberts. Workcrews: An
abstraction for controlling parallelism. International
Journal of Parallel Programming, 17(4):347–366, 1988.

[66] C. Wacek, H. Tan, K. Bauer, and M. Sherr. An Empirical
Evaluation of Relay Selection in Tor. In Network and
Distributed System Security Symposium (NDSS), 2013.

[67] G. Yan et al. Simulation of large scale networks using
ssf. In Winter Simulation Conference, 2003.

[68] L. Yang and F. Li. mTor: A Multipath Tor Routing Be-
yond Bandwidth Throttling. In 2015 IEEE Conference
on Communications and Network Security (CNS), 2015.

[69] L. Yang and F. Li. Enhancing Traffic Analysis Resis-
tance for Tor Hidden Services with Multipath Routing.
In International Conference on Security and Privacy in
Communication Systems, 2015.

USENIX Association 2022 USENIX Annual Technical Conference 341

https://github.com/torvalds/linux/commit/5449162ac001a926ad8884882b071601df5edb44
https://github.com/torvalds/linux/commit/5449162ac001a926ad8884882b071601df5edb44
https://gitlab.torproject.org/tpo/core/tor/-/issues/40404
https://gitlab.torproject.org/tpo/core/tor/-/issues/40404

Appendices

A Background Details for Related Tools

In this appendix we provide extended background on exist-
ing tools for network experimentation. We consider popular
tools from the architecture categories listed in §2.2 and §2.3:
Mininet [45] (emulation), NS-3 [26] (simulation), gRaIL [54]
(hybrid, multi-process, ptrace controller), and Shadow (hy-
brid, uni-process, plugin namespaces) [30].

A.1 Mininet
Mininet is a popular network emulator that implements a

common design approach for network experimentation tools.
Mininet creates a network of virtual hosts that run applica-
tions as standard Linux processes, virtual switches that sup-
port OpenFlow for custom routing and software-defined net-
working, and virtual controllers and links. Mininet executes
application binaries and routes network packets through vir-
tual network interfaces created within the Linux kernel [45].
The packets are routed by virtual switching and routing ap-
pliances managed by Mininet. Network attributes, such as
link bandwidth and latency, are emulated using Linux’s traffic
control (tc) facilities.

Mininet’s design is very flexible: most any application can
be run directly without the need of explicitly programmed
network simulation routines, making it easy to spin up a new
network and quickly start testing software. However, Mininet
offers poor control and scalability because the host kernel is
responsible for handling packet events, which is unpredictable
and sensitive to load as we show in §5.4.

A.2 NS-3 and gRaIL
NS-3 is one of the most widely-used network simulation

tools used by network researchers. NS-3 simulations are com-
posed of virtual nodes running application and routing soft-
ware that are implemented entirely within NS-3’s application
logic (written in C++). NS-3 experiments offer a high de-
gree of control and reproducibility, because all aspects of
the networking—from generating a packet within an appli-
cation to physically transmitting the packet’s bits over physi-
cal media—are simulated. However, a serious drawback of
NS-3’s design is that real applications cannot be run within
the simulation. For example, to run ping between two NS-
3 nodes, a ping application simulator must be hand-crafted
within NS-3 application code (as opposed to directing the
nodes to execute a ping binary). Although this requirement
may be acceptable to simulate simple applications, generating
realistic simulations of complex protocols (e.g., Tor [17]) is
difficult due to engineering complexities (e.g., the Tor code-
base contains tens of thousands of lines of code).

Two NS-3 modules have been developed that do allow for
real application execution within NS-3 simulations: (i) direct-
code execution (DCE) mode [62], and (ii) the discrete event

protocol emulation vessel (gRaIL) [54]. In the more recent
gRaIL approach, NS-3 nodes are configured to run real appli-
cation binaries (e.g., /usr/sbin/ping) which are forked and
executed as genuine Linux processes. The progress of these
processes are managed by Linux’s process tracing facility
ptrace, which allows the NS-3 process to intercept system
calls made by the applications and translate them into NS-3
simulation events. Configuring NS-3 with gRaIL improves
simulation realism, but has a very high performance cost as
we show in §5.4.

A.3 Shadow
Shadow is a hybrid, uni-process network experimenta-

tion tool that incorporates aspects of both simulation and
emulation [30]. At its core, Shadow is a conservative-time
discrete-event network simulator that simulates network pro-
tocols (e.g., TCP and UDP), threading (using GNU portable
threads [48]), and other kernel operations. Shadow dynam-
ically loads applications into their own namespaces (using
dlmopen and a custom loader [63]) and directly executes ap-
plication code in the simulator process. Shadow hooks the
applications into the simulation using function interposition,
but emulates a Linux environment so that application code
functions as if it was running in Linux.

Shadow represents the state-of-the-art hybrid network simu-
lator tool for directly executing applications in large-scale dis-
tributed system simulations. A primary reason is that Shadow
is designed to be high-performance: it runs as a single process
(with multiple threads) to avoid inter-process overhead and
unnecessary data copies. This has led Shadow to become the
standard tool for simulating the Tor anonymity network [40].
However, Shadow has not had widespread use outside of the
niche Tor application; Shadow has been shown to simulate
Bitcoin networks [48], but that work has since been aban-
doned due to compatibility, correctness, and maintainability
issues as we describe in §5.4.

B Interposing System Calls with ptrace

As described in §4, we implemented a system call interposi-
tion strategy based on ptrace to better understand the per-
formance limits of a simulator designed around ptrace. Our
ptrace implementation provides an alternative to Phantom’s
seccomp secondary interposition strategy (see §3.2.4).

gRaIL [54] is designed solely around the use of ptrace
to control processes, system calls, and data transfer. Unfor-
tunately, during our ptrace implementation and evaluation,
we learned that the way that gRaIL uses ptrace (which is
a standard and intuitive way to use ptrace) results in sev-
eral scalability and performance problems that significantly
reduce the performance of a hybrid network simulator. Since
we wanted to understand the performance limits of ptrace,
we developed enhancements to make ptrace more efficient
and work around its bottlenecks.

342 2022 USENIX Annual Technical Conference USENIX Association

In this appendix, we describe what we learned about mak-
ing a ptrace-based system more performant and scalable. We
argue that our improvements make our application of ptrace
in a simulator significantly more performant and scalable than
gRaIL’s. Moreover, our implementation inside of Phantom en-
ables us to more fairly evaluate and compare the best version
of gRaIL that it could be rather than its inefficient prototype.

B.1 Scaling waitpid to Many Tracees
In initial evaluations, we were surprised to find that when

adding n hosts to a PHOLD [20] simulation, in which the total
number of messages passed scales linearly with the number of
hosts, the simulation time grew quadratically with n instead
of linearly. This turned out to be because the waitpid syscall,
which is used by a ptrace tracer to wait for the next ptrace
stop from a given tracee, performed a linear scan of child tasks,
making its performance O(n) in the number of processes in
the simulation; i.e. adding a process with some fixed amount
of work to the simulation not only added that amount of work,
but also made the management of every other process in the
simulation slower.

Since this behavior of waitpid is potentially surprising,
and could hurt performance for other large-scale uses of
ptrace, we implemented a kernel patch making it O(1) in-
stead of O(n). That patch was accepted, and first included in
Linux kernel version v5.13-rc1 [56].

Since we wanted good performance in today’s Linux distri-
butions without needing to install a custom kernel, we also
implemented a workaround in Phantom’s ptrace code. Ini-
tially we worked around this with a dedicated "fork proxy"
thread to initially fork each managed process. This way the (at
the time) one-per-CPU "worker thread" weren’t parents of the
managed processes. However, waitpid also performed an O(n)
linear scan of tracees. This meant that when switching from
running one managed thread to another, the worker thread
needed to ptrace-detach from the blocked thread (sending it
a SIGSTOP to prevent it from running), and ptrace-reattach
to the next thread to run. This workaround added substan-
tial overhead, but was an overall performance improvement
for simulations involving more than around 1000 managed
threads per worker thread.

We were later able to remove the fork-proxy workaround
when we moved to the logical-processor-based scheduler de-
scribed in §3.2.2. Since each worker thread only manages the
processes and tasks of a single simulated host, waitpid does
not become more expensive as hosts are added.

B.2 Reducing Per-syscall ptrace Stops
Many ptrace-based systems, including gRaIL [53, 54] use

the PTRACE_SYSCALL command to execute the tracee until its
next syscall. When the tracee makes a syscall, the tracee is put
into a syscall-enter-stop. The tracer can then fetch the
memory registers of traced program to examine the syscall
arguments using a PTRACE_GETREGS command (and memory

referenced by those parameters as per Appendix B.3). In the
case where the tracer desires to emulate the syscall, as is
usually the case in Phantom, the tracer can:
1. issue a PTRACE_SETREGS command to change the syscall-

number being requested to an invalid one;
2. issue another PTRACE_SYSCALL command to allow the

tracee to execute the syscall, which will result in the
issuing of an ENOSYS signal that puts the tracee into a
syscall-exit-stop;

3. overwrite the error result to emulate the original syscall
using PTRACE_SETREGS etc.; and

4. allow the tracee to continue running again with another
PTRACE_SYSCALL command.

Using this approach, there are a minimum of 4 context-
switches per syscall (assuming the tracee and tracer are exe-
cuting on the same CPU):
1. tracee to tracer at the syscall-enter-stop;
2. tracer to tracee to execute the (no-op) syscall;
3. tracee to tracer at the syscall-exit-stop; and
4. tracer to tracee to resume the tracee’s execution.

The ptrace syscall has an alternative command for when
syscalls are to be emulated instead of just monitored: the
PTRACE_SYSEMU command. As with PTRACE_SYSCALL, the
tracee enters ptrace-enter-stop when first encountering a
syscall. If the tracer continues again using PTRACE_SYSEMU,
there is no syscall-exit-stop, saving 2 context-switches.

The primary downside of using PTRACE_SYSEMU is that if
we really do want the managed process to execute the orig-
inal syscall (perhaps with modified arguments), we can no
longer just resume the original syscall, because the kernel
does not execute the syscall when using PTRACE_SYSEMU. In
Phantom we instead first get out of the ptrace-enter-stop,
with a PTRACE_SINGLESTEP command, overwrite the instruc-
tion pointer to "rewind" it to point to the syscall instruction
again, and then PTRACE_SINGLESTEP again to actually exe-
cute it. This adds an extra ptrace-stop relative to the case
where we would use PTRACE_SYSCALL, but this tradeoff is
worthwhile when most syscalls are being emulated (as is the
case in Phantom).

B.3 Efficiently Accessing Tracee Memory

The mechanism for accessing tracee memory via ptrace
itself is PTRACE_PEEK and PTRACE_POKE. This is the mech-
anism used by many ptrace-based systems, including
gRaIL [53, 54] and DetTrace [55]. Unfortunately, this mech-
anism requires a separate syscall and accompanying mode
transition to access each word of memory, making it ineffi-
cient for large structs and buffers.

We could reduce the number of syscalls required for
large memory accesses by instead reading and writing the
/proc/[pid]/mem pseudo-file. After opening the file (which
requires already being ptrace-attached), accessing a contigu-
ous buffer can be done with a single pread or pwrite syscall

USENIX Association 2022 USENIX Annual Technical Conference 343

and multiple buffers can be accessed at the same time with
preadv and pwritev.

However, we instead make use of the process_vm_readv
and process_vm_writev syscalls, which are analagous to
preadv and pwritev but are specialized for accessing the
memory of another process. They are a bit simpler to use,
since they take the pid of the target process instead of need-
ing to open and maintain a file descriptor. They also do not re-
quire the caller to be ptrace-attached to the target process—a
feature that Phantom utilizes in order to use the same code for
accessing managed process memory no matter if we are using
the ptrace- or seccomp-based syscall interception strategies.

As discussed in §3.2.6, in Phantom we make most mem-
ory accesses even more efficient by remapping some of the
tracee’s memory regions into a shared memory file, which
is also mapped into Phantom. As we show in Figure 5, this
further increases cross-process data transfer performance.

B.4 Enabling Work Stealing
In Shadow, there is roughly one worker thread per-CPU,

and in each round of the simulation, each worker thread pro-
cesses a queue of simulated hosts. When a worker thread’s
queue is empty, it steals hosts from another worker’s queue.

Unfortunately, when using ptrace, only the thread that
originally ptrace-attached a traced thread is permitted to
issue ptrace commands; other threads in the process are not.
This means that one worker thread cannot steal a simulated
host from another worker thread and control its managed
processes while the original worker thread is still attached.

We briefly pursued patching the kernel to lift this restriction,
but it would involve a fair bit of complexity, and there is un-
derstandable hesitancy from kernel developers to add further
complexity to the already quite complex ptrace subsystem
in order to support a somewhat niche use-case.

We initially solved this problem by detaching ptrace from
each managed thread in a host when done processing that
host’s events for the round, and re-attaching each thread the
first time we need to control it each round. This process had
substantial overhead, which was incurred even if the host and
its threads were executed by the same worker the next round.

Phantom’s logical-processor-based scheduler design de-
scribed in §3.2.2 addresses this problem. In Phantom’s
scheduling architecture, worker threads are stolen by logi-
cal processors, but hosts never move between worker threads.
Therefore a worker thread can stay attached to its managed
threads for the entire simulation.

B.5 Avoiding ptrace Stops on Some Syscalls
As shown in Figure 4, intercepting a syscall via

LD_PRELOAD and servicing it via IPC is significantly faster
than intercepting and servicing it via ptrace. Unfortunately it
is difficult to create a hybrid approach that uses LD_PRELOAD
but falls back to ptrace, because ptrace stops for every
syscall. Even if we avoid a ptrace-stop by intercepting a

syscall via LD_PRELOAD, any syscall we make to communi-
cate with Phantom will still generate a ptrace-stop, negating
the performance benefit.

We prototyped a solution that worked around this prob-
lem by never making a syscall to perform IPC; after sending
a message in the shared memory segment, we would do a
busy-wait to receive the response instead of making a futex
syscall. This approach actually worked well for simulations
that otherwise had idle cores to spare—the Phantom worker
thread could service the syscall on one CPU while the man-
aged thread spun in its loop on another. However, since this
effectively halved the maximum concurrency, we ultimately
discarded this approach.

A better solution to this problem is to use a seccomp filter
to have some syscalls generate a SECCOMP_RET_TRACE event,
and then use ptrace to catch those instead of stopping on
every syscall [55].

In Phantom we similarly leveraged seccomp, but config-
ured seccomp to trap to a signal handler (SECCOMP_TRAP) in
the managed thread. The signal handler uses IPC if needed
to communicate with Phantom, doing away with ptrace
altogether. We have not performed a direct performance
comparison between this SECCOMP_TRAP approach and the
SECCOMP_RET_TRACE approach, but expect it to have simi-
lar or better performance: while SECCOMP_RET_TRACE skips
the transfer from control in the kernel to the managed thread
before context-switching to the tracing thread, using memory-
based IPC from the SECCOMP_TRAP handler lets us transfer
the register values more cheaply than PTRACE_GETREGS and
PTRACE_SETREGS. More importantly, we can service some
syscalls from the SECCOMP_TRAP handler without having to
context-switch to Phantom at all, as described in §3.2.5.

C Context Switching Performance

In Phantom’s process-oriented architecture, control and mes-
sages must be exchanged between Phantom’s worker pro-
cesses and managed application processes via interprocess
communication (IPC). Linux and the POSIX standard offer
many facilities for exchanging data across process boundaries
and synchronizing processes. In this appendix, we examine
the cost associated with a process context switch when facil-
itated by a given synchronization method. The control flow
being measured is as follows, for a communicating parent
process and child process pair:
1. The child waits for control from the parent;
2. The parent signals to the child that it should run, and waits

for the child;
3. The child gains control, immediately signals back to the

parent that it should run, and goes into the wait state; and
4. The parent wakes up and regains control.
In other words, this benchmark measures the latency required
to perform a context-switch round-trip from a parent process
to a child process and then back to the parent.

344 2022 USENIX Annual Technical Conference USENIX Association

Ato
mic

Flag

M
essa

ge Queue

Semaphore

Unix
Domain

Socket
0.0

2.5

5.0

L
at

en
cy

(µ
s)

4.4
5.1

4.1

6.3

Same Core

Ato
mic

Flag

M
essa

ge Queue

Semaphore

Unix
Domain

Socket
0

20

1.4

14.1 15.4

32.7

Cross Core

Ato
mic

Flag

M
essa

ge Queue

Semaphore

Unix
Domain

Socket
0

20

40

1.5

21.4

28.7

35

Cross Node

Figure 16: Time required to perform a process context-switch round
trip under various synchronization mechanisms and process CPU
affinity values.

Four synchronization mechanisms are included in the
benchmark:
1. An _Atomic _Bool flag placed in shared memory. Wait-

ing is performed by repeatedly checking if the value is
true (i.e., spinning), and signaling is performed by setting
the flags value to true.

2. A POSIX semaphore place in shared memory. Waiting
is performed with sem_wait and signaling is performed
with sem_post.

3. A Unix domain socket with ends shared by the parent and
child process. Waiting is performed with recv called on
the socket’s file descriptor and signaling is performed with
send called on the descriptor.

4. A POSIX message queue shared by the processes. Wait-
ing is performed by calling mq_recv and signaling is per-
formed with mq_send.
In addition to the mechanism, in this benchmark we also

vary the CPU affinity of the parent and child processes. The
cost of context switching varies depending upon which pro-
cessors are executing the processes. The benchmark tests
three cases: (i) when the parent and child are pinned to the
same CPU core; (ii) when the parent and child are pinned to
separate cores on the same CPU; and (iii) when the parent
and child are pinned to separate cores on separate NUMA
nodes and CPUs.

We ran these benchmarks on a machine with two 14-core
Intel Xeon E5-2697 CPUs clocked at 2.60 GHz (the same ma-
chine used in our §5 experiments). The machine was running
CentOS 7 and Linux kernel version 5.11.6-1. Figure 16 shows
the average context-switch round-trip time taken over 100k
repeated trials. (99% confidence interval ranges are drawn at
the top of each bar, but in every case the interval size is almost
zero.) These results show that POSIX message queues and
semaphores slightly outperform Unix domain sockets, and
that semaphores are the most efficient synchronization method
when the processes are pinned to the same core (which is the
case in Phantom). Cross-core and cross-node context switch-
ing is significantly more expensive than same-core, with the
exception of the atomic boolean flag; when using this syn-

chronization mechanism, having two CPUs that can spin in
parallel minimizes latency. However, spinning can waste CPU
cycles and is not economical when the CPU is under load.
Hence, we find that POSIX semaphores are the most perfor-
mant mechanism to synchronize control between Phantom
and its managed, child processes.

D Simulated System and Network Facilities

In this appendix, we describe at a high level the system and
network facilities that Phantom simulates. These simulated
components are mostly borrowed from Shadow (see §4), but
significant attention was required to integrate these with Phan-
tom’s new system call interposition, memory manager, and
process scheduling interfaces.
Time: As a simulator, Phantom has complete control over
simulated time. Attempts by managed processes to obtain
the current time are handled by returning the simulated time
(relative to a recent epoch) instead. (Because retrieving time
is a hot-path function, time-related system calls are handled
in the shim as described in §3.2.5.)
Input/Output: Phantom simulates file descriptors and tracks
them using a lookup table for each managed process. This
ensures a consistent mapping of file descriptor numbers to the
internal objects needed to operate on them. Files are simulated
internally by using real OS files and translating between the
simulated and real file descriptor numbers. Other descriptors
can be completely simulated internally, including sockets,
pipes, timers, and events. Event notification facilities (e.g.,
select, poll, and epoll) can also be simulated by tracking
the state of each simulated descriptor and triggering callback
events when those states change in a way that requires action.
Both blocking and non-blocking operations are supported as
described in §3.2.7.
Transport: Phantom is a packet-level simulator that imple-
ments simulated versions of protocols such as TCP and UDP.
Although packet-level semantics are simulated with respect to
the associated socket protocols, packet payloads (application
data) sent by the managed processes are copied only once
into internal buffers. Transferring this data between virtual
hosts across the simulated network amounts to transferring
the memory address of the original data location, minimizing
overhead when transferring simulated packets.
Network: Phantom simulates DNS using a simple name to
virtual IP address mapping. Routing is simplified to running
shortest path over a configurable network graph to compute
end-to-end latency and packet loss. In addition to these net-
work characteristics, packets sent over the simulated network
will also be subject to: (i) virtual host bandwidth limits which
are simulated using token buckets; and (ii) network queuing
semantics which are simulated using an implementation of
the CoDel (controlled delay) network scheduling algorithm.

USENIX Association 2022 USENIX Annual Technical Conference 345

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

20

40

60

B
en

ch
m

ar
k

T
im

e
(µ

s)

54.52

16.07

36

26.82

blocking nanosleep

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

20

40

60

24.39

9.8

23.09
18.39

nonblocking nanosleep

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

20

40

60

38

16.03

34.03
28.88

1k write+read

Figure 17: Time to execute our microbenchmarks from §5.1 when
Phantom is configured to run with the ptrace interception strategy
and the Linux CPU pinning and realtime scheduling features.

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

10

20

30

B
en

ch
m

ar
k

T
im

e
(µ

s)

9.86 9.51

23.56
25.23

blocking nanosleep

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

10

20

30

0 0 0.41 0.11

nonblocking nanosleep

sta
ndard

pin+sta
ndard

realti
me

pin+realti
me

0

10

20

30

7.87 7.78

19.62 19.05

1k write+read

Figure 18: Time to execute our microbenchmarks from §5.1 in
the uni-process, preload-based Shadow architecture when using the
Linux CPU pinning and realtime scheduling features.

E Extended Evaluation

In this appendix, we include some extended evaluation details
and results that we were unable to include in the main body
of the paper (in §5) due to space constraints.

E.1 Extended Microbenchmarks
We conducted the evaluation here and in §5.1 using a

blade server cluster in which each blade contained identical
hardware: 256 GiB of RAM and 2×14 core Intel Xeon E5-
2697v3 CPUs (56 total hyper-threads) running at 2.6 GHz.
Each blade machine was running CentOS 7 and Linux kernel
version 5.11.6-1. We configured our experiments to run in
docker containers to ensure that we were running identical
software stacks across the blade machines.

Figure 17 shows the effect of Linux CPU scheduling fea-
tures when running Phantom with a ptrace interception strat-
egy. We find that CPU pinning alone performs the best and
that adding realtime scheduling along with CPU pinning has
an adverse effect. Running with realtime scheduling alone
only slightly improves performance over using the standard
Linux scheduling mechanisms.

Figure 18 shows the effect of Linux CPU scheduling
features on a uni-process design. The choice of Linux
CPU scheduling feature has little effect on the nonblock-
ing nanosleep benchmark, since it is effectively a function
call and already incredibly efficient. Interestingly, realtime
scheduling reduces performance for both the blocking and io-

7 14 21 28 35 42 49 56

Logical Processors Count

0

2

4

6

8

In
it

ia
liz

at
io

n
T

im
e

(s
)

only ptrace
preload+ptrace
only seccomp
preload+seccomp
uni-process

Figure 19: Initialization time is the time for Phantom to launch all
managed processes (or for uni-process Shadow to load all names-
paces) and run them until the first blocking system call.

pro
c vm

pro
c mmap

uni-p
ro

cess
0

25

50

75

B
en

ch
m

ar
k

T
im

e
(s

)

78.7 79.2

53.1

pro
c vm

pro
c mmap

uni-p
ro

cess
0

1

2

M
ax

R
A

M
U

se
d

(G
iB

)

1.17
1.39

2.24

pro
c vm

pro
c mmap

uni-p
ro

cess
0.0

0.5

1.0

1.5

P
ag

e
F

au
lt

s
(×

10
6
)

0.42

0.66

1.52

Figure 20: Performance of our P2P benchmark with Phan-
tom using ptrace interception with process_vm_read and
process_vm_write fallback facilities compared to its primary inter-
process memory mapping design.

based benchmarks, and adding pinning and realtime schedul-
ing together does not mitigate these effects.

E.2 Extended Macrobenchmarks
We conducted the evaluation here and in §5.2 using the

same blade server cluster that we used for the microbench-
marks (see Appendix E.1).
Interception Strategies: Figure 19 shows the initialization
time for Phantom with various interception strategies com-
pared to the uni-process Shadow design. As expected, preload-
ing has an insignificant effect on launch/load times. When
using seccomp, Phantom completes the initialization process
the faster than the uni-process design. Initialization takes
the longest when using ptrace, and scales the worst as the
number of LPs increases.
Memory Manager: Figure 20 shows that, when config-
ured to use the ptrace interception strategy, the inter-
process memory mapping design performs comparably to
process_vm_read and process_vm_write fallback facili-
ties despite using slightly more RAM and causing slightly
more page faults. Phantom’s memory manager uses less RAM
than Shadow’s uni-process design in all cases.
Thread Scheduler: Figure 21 shows the performance of
the work-stealing thread schedulers when running Phantom
with the ptrace interception strategy compared to the perfor-
mance when using the schedulers in the uni-process Shadow
design. Consistent with our results from §5.2, we find that

346 2022 USENIX Annual Technical Conference USENIX Association

th
read/host

th
read/LP

0

20

40

60

80

B
en

ch
m

ar
k

T
im

e
(s

)

78.4
86.9

ptrace

th
read/host

th
read/LP

53.1 54.9

uni-proc

th
read/host

th
read/LP

0

1

2

M
ax

R
A

M
U

se
d

(G
iB

)

1.39

1

ptrace

th
read/host

th
read/LP

2.25

1.6

uni-proc

th
read/host

th
read/LP

0

2

4

6

8

C
P

U
M

ig
ra

ti
on

s
(×

10
3
)

7.43

3.14

ptrace

th
read/host

th
read/LP

5.61

0.06

uni-proc

Figure 21: Performance of our P2P benchmark when our worker
thread scheduler uses one thread per virtual host or one thread per
logical processor (LP).

using one worker thread per virtual host decreases the time
to complete the P2P benchmark relative to using one worker
thread per LP despite using more RAM and causing more
CPU migrations.
Peer Workload: We investigated the performance effect of
varying the workloads in our P2P benchmark. In §5.2.1 we de-
scribed the configurable parameters in our benchmark: each
peer sends m messages, when receiving a message a peer
performs c AES (encrypt, decrypt) sequences before send-
ing another message, and message destinations are selected
according to a peer weighting function W .

Figure 22a shows the results when varying c in the range
[0,3]. In Phantom with seccomp interception and in Shadow’s
uni-process design, we observe a roughly linear increase in
the benchmark time when increasing the number of AES
operations that must be performed upon receipt of every mes-
sage as expected. Interestingly, the linear constant appears
to be slightly larger for seccomp than for uni-process, and
much larger for ptrace. We speculate that the observed per-
formance may be due to caching differences.

Figure 22b shows the results when varying m in the set
{1,10,100,1k}. After subtracting the baseline initialization
time (represented roughly by the 1 msg/host case), we observe
a linear increase in the benchmark time as we increase the
message load; this is the expected result since increasing the
message load also increases the amount of work the simulator
must perform.

Figure 22c shows the results when varying the workload
distribution. In addition to the exponential function defined
in §5.2.1 as e−3x for x ∈ [0,1], we also consider a “uniform”
distribution function where each peer has an equal probability
of being selected as the destination for any message, and a
“ring” distribution function where each peer simply selects its
closest neighbor as the destination of its outgoing messages.
We can see from Figure 22c that these alternative workload
distribution functions have minor effect on performance in
our simulations.

E.3 Extended Network Verification
In this appendix, we present extended details and results

from our evaluation of Phantom’s ability to accurately repre-
sent network characteristics from §5.3.

ptra
ce

seccomp

uni-p
ro

cess
0

200

B
en

ch
m

ar
k

T
im

e
(s

)

78.9

32.1
53.1

0 AES/msg

ptra
ce

seccomp

uni-p
ro

cess
0

200 136

74.5 77.7

1 AES/msg

ptra
ce

seccomp

uni-p
ro

cess
0

200

276

120 118

2 AES/msg

ptra
ce

seccomp

uni-p
ro

cess
0

200

336

164 159

3 AES/msg

(a) The effects of varying CPU load

ptra
ce

seccomp

uni-p
ro

cess
0

10

20

B
en

ch
m

ar
k

T
im

e
(s

)

4.4

1.7

4.1

1 msg/host

ptra
ce

seccomp

uni-p
ro

cess
0

10

20

11.1

4.7

8.6

10 msg/host

ptra
ce

seccomp

uni-p
ro

cess
0

50

100
78.9

32.1

53.1

100 msg/host

ptra
ce

seccomp

uni-p
ro

cess
0

500

758

367

513

1k msg/host

(b) The effects of varying message load

ptra
ce

seccomp

uni-p
ro

cess
0

50

B
en

ch
m

ar
k

T
im

e
(s

)
77.5

29.9

53.1

uniform workload

ptra
ce

seccomp

uni-p
ro

cess
0

50

78.9

32.1

53.1

exponential workload

ptra
ce

seccomp

uni-p
ro

cess
0

50

79.3

27.3

52.4

ring workload

(c) The effects of varying peer load distribution

Figure 22: Performance of our P2P benchmark in Phantom using
the seccomp and ptrace interception strategies and in Shadow’s
uni-process design while varying the benchmark CPU and network
load parameters.

E.3.1 Extended Basic Network Verification

We verify that Phantom accurately models networked ap-
plication behavior when those applications are run in different
networks with a variety of bandwidth and latency properties.
We use two test applications, iPerf and a UDP echo applica-
tion, to measure Phantom’s simulated bandwidth and latency
characteristics. We compare the measurements collected from
Phantom to a set of baremetal measurements we collected by
running the same applications on two physically-networked
servers with emulated bandwidth and latency properties. Ad-
ditionally, we collected iPerf bandwidth measurements using
Shadow so that we could verify that Phantom does not simu-
late network activity differently than Shadow does. Below we
describe the experimental setup and the the results from our
two experiments.
Setup: To collect simulated bandwidth measurements, we ran
a series of iPerf(v2) simulations with Phantom and Shadow.
In each simulation, a single client and server communicate

USENIX Association 2022 USENIX Annual Technical Conference 347

using iPerf’s single-threaded TCP benchmark. The client
sends traffic for 10 s, and the server runs until all the data
from the client is received. Bandwidth is recorded from the
server, which is receiving the traffic, in three-second intervals.
Each simulation uses a network configured with a different
bandwidth and one-way latency. For these experiments, we
consider bandwidth values between 1 Mbit/s and 1 Gbit/s,
and one-way latency values between 1 ms and 175 ms. We de-
termined that 175 ms was a realistic upper-bound on latency
in wide-area networks by examining RIPE Atlas ping mea-
surements from Jan. 11, 2021: we found that the maximum
latency reported by the probes for all built-in measurements
was 173.5 ms after removing outliers.

To collect simulated latency measurements, a custom UDP
echo application is ran between a client and a server with
Phantom. The echo application simply measures the time
required for the client to echo a UDP packet sent by the server,
which estimates the round-trip time between the server and
the client. We consider the same range of latency values in
these experiments as in the bandwidth experiments.

To collect emulated baremetal measurements for com-
parison, we ran the same applications on two physically-
networked servers. The machines had 2×Intel Xeon E5-
2697 v3 CPUs, 256 GiB of RAM, and ran Debian 11 with
Linux Kernel v5.10.0-8. They were both connected with
NetXtreme II BCM57810 10 Gigabit Ethernet NICs through
a 10 Gbit/s switch. We used Linux’s netem facilities to config-
ure each machine’s NIC with a specified bandwidth rate limit
and packet latency. Additionally, we set the machine’s TCP
stack to use the Reno congestion control algorithm, which is
also implemented in Shadow and Phantom.
iPerf Bandwidth Measurements: Figure 12 in §5.3 com-
pares iPerf-reported bandwidth from the baremetal measure-
ments, Phantom, and Shadow. In the left three plots, latency
is held constant (at either 10 ms, 75 ms, or 175 ms) and
iPerf-reported bandwidth is plotted versus the experimentally-
configured bandwidth limit. In the right three plots, band-
width is held constant (at either 10 Mbit/s, 100 Mbit/s, or
1 Gbit/s) and iPerf-reported bandwidth is plotted versus the
experimentally-configured packet one-way latency. These
plots show the bandwidth reported by iPerf during the 3-
second interval closest to the half-way point of the transfer,
which estimates the sustained maximum bandwidth achieved
between the client and the server. We find that Phantom does
not change modeling accuracy relative to Shadow, and that
Phantom-reported performance matches baremetal-reported
performance in most network conditions. With more extreme
bandwidth and latency values, Phantom is able to achieve
higher link-utilization than baremetal. These differences may
be accounted for by different parameterizations of Phantom’s
TCP stack and Linux’s (e.g., different initial window sizes).
Extending and tuning Phantom’s TCP stack to more closely
approximate the behavior of Linux’s networking facilities is
a promising direction for future work.

Table 3: The Number of Virtual Hosts, Processes, and the Amount
of Traffic in each Simulated Tor Network of the Given Scale

Network Scale 5% 10% 15% 20% 25% 30%

Clients 436 871 1307 1742 2178 2614
Relays 349 694 1039 1385 1732 2076
Servers 40 79 119 158 198 238

Total Virtual Hosts 825 1644 2465 3285 4108 4928

Tor 785 1565 2346 3127 3910 4690
OnionTrace 785 1565 2346 3127 3910 4690

TGen 476 950 1426 1900 2376 2852
Total Processes 2046 4080 6118 8154 10196 12232

Simulated Gbit/s? 12 24 37 49 62 74
Equivalent Tor Users 39.6k 79.2k 119k 158k 198k 238k

? Mean across 20 total simulations for each network scale.

Latency Measurements: Both the Phantom and baremetal
measured RTT latency values matched nearly identically with
the value specified in the experiment for all configured la-
tencies. The largest percent-error between the simulated and
emulated results (taking the emulated measurements to be
ground-truth) was 3%, which occurred at the lowest config-
ured one-way latency (1 ms): the Phantom-measured RTT
was 2 ms, whereas the baremetal measured RTT was 2.07 ms.
The difference can be accounted for by software processing
time, which Phantom does not simulate.

E.3.2 Extended Tor Network Verification

We consider large-scale Tor network simulation as a prac-
tical use case for Phantom. By supporting Tor, we believe
Phantom will have broader impact particularly among re-
searchers in the privacy-enhancing technologies community
since they commonly use simulation [5, 7–9, 15, 16, 18, 21–
25, 27–29, 31, 33–37, 39, 41–43, 46, 47, 49, 51, 58–61, 64,
66, 68, 69] to explore Tor performance and security research
problems [6]. Moreover, the Tor Project has recently adopted
the use of simulation in their own network planning and per-
formance analyses [2], and Phantom has already been used to
guide these efforts [57].

The Tor anonymity network [17] contains over 6k relay
nodes [1] and about 800k users that are simultaneously active,
i.e., running a Tor client and generating network traffic [38].
Constructing a simulated Tor network that is representative
of the real Tor network involves a significant modeling and
configuration effort [40]. Important factors that must be con-
sidered include the number of virtual hosts running Tor clients
and relays, traffic generator clients and servers, the network
latency between these hosts, the bandwidth available to these
hosts, and the configured behavior of the clients, relays, and
traffic generators. Fortunately, recent foundational work on
Tor network experimentation has contributed methods and
tools to guide our experimentation process [40]. We use these
tools directly to create Tor network configs and run experi-
ments in both Phantom and Shadow (Tor network modeling
is outside the scope of this paper).

348 2022 USENIX Annual Technical Conference USENIX Association

5 10 15 20 25 30

Tor Network Model Scale (%)

5

10

15

20

25

30

A
bs

ol
ut

e
R

un
T

im
e

(h
)

phantom
shadow

(a) Absolute Run Time

5 10 15 20 25 30

Tor Network Model Scale (%)

90

95

100

105

110

R
el

at
iv

e
R

un
T

im
e

(%
)

phantom
shadow

(b) Run Time Relative to Shadow

5 10 15 20 25 30

Tor Network Model Scale (%)

90

92

94

96

98

100

R
el

at
iv

e
R

A
M

U
se

d
(%

)

phantom
shadow

(c) Max RAM Used Relative to Shadow

Figure 23: The time and memory required to complete each Tor network simulation in Phantom (using seccomp interception) and in Shadow’s
uni-process design as the network model scale increases. (b) and (c) show performance relative to Shadow’s baseline.

Setup: We generate 10 unique Tor network configs for each of
6 network scale factors using Tor network state from 2021-01;
Table 3 shows the total number of virtual hosts and Linux pro-
cesses used at each scale. Each client host runs three processes:
(i) a TGen traffic generator process that generates traffic ac-
cording to Markov models created by measuring the real Tor
network [38]; (ii) a Tor process in client mode that forwards
the TGen traffic into our private Tor network; and (iii) an
OnionTrace process that connects to Tor to gather statistics
and log information. Each relay host runs a Tor process in
relay mode that forwards traffic in our private Tor network,
and an OnionTrace process that gathers statistics and logs.
Each server host simply runs a TGen server process that co-
ordinates with TGen clients to generate traffic. Table 3 also
shows the total volume of traffic being simulated at each scale,
and the equivalent expected number of Tor users that it would
take to generate that traffic in the public Tor network.

We run each of the resulting 60 Tor networks using Tor
v0.4.5.9 in Phantom (using seccomp) and in Shadow (the
state-of-the-art Tor network simulator). We conducted the
evaluation using a blade server cluster in which each blade
contained identical hardware: 1.25 TiB of RAM and 4×8
core Intel Xeon E5-4627v2 CPUs (without hyper-threading
support) running at 3.30 GHz. For all experiments, we enable
CPU pinning, disable realtime scheduling, and use 32 LPs
(one LP per core) following our results from §5. We present
the results as the mean across the ten networks at each scale
with 95% confidence intervals (CIs).
Verification Results: We analyze the performance character-
istics in each simulation, e.g., the simulated time to transfer
data through the simulated Tor network. Recall from §5.3 that
our primary goal is to validate that Phantom does not reduce
the accuracy of the simulated network stack that it integrates
and that we consider our validation successful if Phantom and
Shadow produce similar simulated network results.

Figure 13 in §5.3 shows the simulated Tor performance
results from using both Phantom and Shadow to each simulate
the ten 30% scale Tor networks. Shown are several Tor per-
formance metrics, including: circuit build times; circuit round
trip times (time from data request to first byte of response);
circuit goodput (transfer rate for range [0.5 MiB, 1 MiB] over
1 MiB and 5 MiB transfers); and client download times for

transfers of 50 KiB, 1 MiB, and 5 MiB. The shaded areas
represent 95% confidence intervals that were computed fol-
lowing recently published methods [40]. We do not find a
significant difference in performance measured in the sim-
ulated Tor network across several metrics when comparing
Phantom to Shadow. Again, this is the desired and expected
result since both Shadow and Phantom share a network stack
implementation. We conclude that Phantom maintains the
same level of simulator accuracy that Shadow provided; i.e.,
Phantom’s multi-process design does not degrade the level of
accuracy that can be provided by a simulated network.
Performance Results: Figure 23 shows the simulators’ per-
formance when running the Tor network simulations.

Figure 23a shows that the absolute time to complete a 60
simulated minute experiment is roughly linear in the network
scale, where Phantom completed the experiment in the 10%,
20%, and 30% networks in 9, 18, and 27 hours, respectively.
Phantom’s run time is remarkably similar Shadow’s, even
though Phantom incurs IPC overhead while Shadow does not;
this demonstrates the efficiency of Phantom’s design even
when simulating somewhat complex distributed systems.

We plot simulation run time relative to Shadow’s baseline
in Figure 23b. Although there is large uncertainty in small net-
work scales (consistent with prior work [40]), we observe that
Phantom is competitive to Shadow’s uni-process performance
at smaller scales and comparable at larger scales: at 30% scale,
Shadow’s performance falls within Phantom’s 95% CI.

Figure 23c shows the max RAM used by Phantom to sim-
ulate each network scale relative to Shadow’s baseline. We
observe that Phantom is more memory-efficient than Shadow:
while Shadow used 178, 357, 540, 727, 919, and 1116 GiB
at network scales of 5%, 10%, 15%, 20%, 25%, and 30%,
respectively, Phantom used at least 90.4% (at 5% scale) and
at most 92.5% (at 30% scale) of RAM relative to Shadow.

We conclude that Phantom effectively overcomes the multi-
process performance challenges identified in §2.3: Phan-
tom’s multi-process design offers comparable performance
to Shadow’s uni-process design while being more memory
efficient. In addition to its performance, Phantom offers sig-
nificant improvements over Shadow because its multi-process
design precludes Shadow’s compatibility, correctness, and
maintainability limitations that we identified in §2.3.

USENIX Association 2022 USENIX Annual Technical Conference 349

	Introduction
	Background and Motivation
	Requirements
	Traditional Architectures
	Hybrid Architectures and Challenges

	Design
	Overview
	Components
	Simulation Controller Process
	Parallel Worker Threads
	Direct Application Execution
	System Call Interposition
	Emulating System Calls
	Managed Process-to-Controller Communication
	Managed Process/Thread Scheduling
	Linux CPU Scheduling

	Implementation
	Evaluation
	Performance: Microbenchmarks
	Performance: Macrobenchmarks
	Setup
	Results

	Accuracy: Verification
	Comparison to Related Tools

	Conclusion
	Background Details for Related Tools
	Mininet
	NS-3 and gRaIL
	Shadow

	Interposing System Calls with ptrace
	Scaling waitpid to Many Tracees
	Reducing Per-syscall ptrace Stops
	Efficiently Accessing Tracee Memory
	Enabling Work Stealing
	Avoiding ptrace Stops on Some Syscalls

	Context Switching Performance
	Simulated System and Network Facilities
	Extended Evaluation
	Extended Microbenchmarks
	Extended Macrobenchmarks
	Extended Network Verification
	Extended Basic Network Verification
	Extended Tor Network Verification

